Physically Based Motion Transformation

The Animation Problem

Automatic generation of expressive/realistic motion that achieves a given set of tasks

- An open problem
- Realism vs. control tradeoff

Physically-based Methods

- Forward simulation [Baraff]

I Highly realistic
I Simulated character very hard to control

- Controllers [Raibert, Hodgins, Ngo, van de Pane]

I Fast motion generation once controllers are computed
I No set rules on controller generation

Spacetime Constraints

- Provide both realism and control
- Downside

I Methods do not scale up
I Sensitivity to the initial position

High Level Control

- Get a limp walk by making one leg stiff
- Reduce gravity to get a "moon walk"
- Change the position and timing of foot placements
- Make a "quiet" run by reducing the floor impact forces

Captured Motion

- Sampled DOFs through time gathered from the real world
\square Rich and realistic
- Hard to edit

The New Approach

- Transform existing motion
- Spacetime constraints formulation
- Simplified character representation
- Get the best of both worlds:

I Expressiveness of captured data
I Controllability of the spacetime model

Outline

Simplified Kinematics

- Remove irrelevant DOFs

- Reduce passive body structure to mass points

- Exploit symmetric movement of limbs

Motion Fitting

- Handle - a property that correlates the original and simplified model
- Must have enough handles to fully determine simplified model configuration

Human Jump

Handle Examples

Motion Synthesis As Constrained Optimization

Body, muscle and force DOFs: $\mathbf{q}(t)$

- Constraints:

I Pose C_{p}
1 Mechanical \mathbf{C}_{m} 1 Dynamics C_{d}

- Objective $E(\mathbf{q}(t))$

Spacetime Model Fitting

- Biological data: mass distribution, muscles
- Use handles to create "best-guess" motion
- Specify constraints essential for given motion (e.g. foot placements)
- Use simple objective: smooth muscles

$$
E(\mathbf{q})=\ddot{\mathbf{q}}^{2}
$$

Outline

Outline

Complex Model

Spacetime Editing

- Change pose and environment constraints

I Foot placement and timing
I Introduce a new obstacle

- Change the objective function

I Minimize floor impact forces
I Make dynamic balance more important

Spacetime Editing

- Change explicit character parameters

I Short leg
I Redistribute mass
I Modify muscle characteristic
I Gravity

Outline

Complex Model

Motion Reconstruction

Minimum Displaced
 Mass Objective

- $E_{d m}\left(\mathbf{q}_{\mathbf{o}}, \mathbf{q}\right)$ evaluates total displaced mass when moving a character from pose $\mathbf{q}_{\mathbf{o}}$ to pose \mathbf{q}

$$
E_{d m}=\iiint_{i} \mu_{i}\left(\mathbf{p}_{i}\left(\mathbf{q}_{o}\right)-\mathbf{p}_{i}(\mathbf{q})\right)^{2} d x d y d z
$$

Reconstruction Algorithm

- For each time t solve
- For each time t solve

$$
\begin{array}{cc}
\underset{\mathbf{q}_{f}}{\operatorname{minimize}} & w_{d m} E_{d m}\left(\mathbf{q}_{o}, \mathbf{q}_{f}\right)+ \\
w_{h}\left[\left(\mathbf{h}\left(\mathbf{q}_{f}\right)-\mathbf{h}\left(\mathbf{q}_{o}\right)\right)-\left(\mathbf{h}\left(\mathbf{q}_{f}\right)-\mathbf{h}\left(\mathbf{q}_{s}\right)\right)\right]^{2}
\end{array}
$$

Alternative

Reconstruction Algorithm

Example: Human Run

- Original model has 59 DOFs
- Simplified model has 19 DOFs
- Optimizations are done on one gait cycle
- Each optimization completes within 2 minutes

Biped

O Hinge Joint
θ Ball Joint

Example: Human Broad Jump

- Original model has 59 DOFs
- Simplified model has 11 DOFs
- Entire upper body reduced to a mass point
- No joint angle DOFs

Hopper

Future Work

- Optimal robots
- Extracting style
- Motion retargeting
- Building motion libraries
- Digital actors

