Physically Based Motion Transformation

The Animation Problem

Automatic generation of expressive/realistic motion that achieves a given set of tasks

- An open problem
- Realism vs. control tradeoff

Physically-based Methods

- Forward simulation [Baraff]
 - Highly realistic
 - Simulated character very hard to control
- Controllers [Raibert, Hodgins, Ngo, van de Pane]
 - Fast motion generation once controllers are computed
 - No set rules on controller generation

Spacetime Constraints

- Provide both realism and control
- **Downside**
 - Methods do not scale up
 - Sensitivity to the initial position

High Level Control

- Get a limp walk by making one leg stiff
- Reduce gravity to get a "moon walk"
- Change the position and timing of foot placements
- Make a "quiet" run by reducing the floor impact forces

Captured Motion

- Sampled DOFs through time gathered from the real world
- Rich and realistic
- Hard to edit

The New Approach

- Transform existing motion
- Spacetime constraints formulation
- Simplified character representation
- Get the best of both worlds:
 - Expressiveness of captured data
 - Controllability of the spacetime model

Model Fitting

Two phases:

- 1. Simplify character kinematics
- 2. Use input motion to construct a spacetime motion model

Simplified Kinematics

- Remove irrelevant DOFs
- Reduce *passive* body structure to mass points
- Exploit symmetric movement of limbs

Simplified Kinematics

NDisrances Hubble

13

Human Run

Human Jump

Motion Fitting

- Handle a property that correlates the original and simplified model
- Must have enough handles to fully determine simplified model configuration

Motion Synthesis As

14

Spacetime Model Fitting

17

- Biological data: mass distribution, muscles
- Use *handles* to create "best-guess" motion
- Specify constraints essential for given motion (e.g. foot placements)
- Use simple objective: smooth muscles

 $E(\mathbf{q}) = \ddot{\mathbf{q}}^2$

Spacetime Editing

21

- Change pose and environment constraints
 - Foot placement and timing
 - Introduce a new obstacle
- Change the objective function
 - Minimize floor impact forces
 - Make dynamic balance more important

Spacetime Editing

22

- Change explicit character parameters
 - Short leg
 - Redistribute mass
 - Modify muscle characteristic
 - Gravity

Motion Reconstruction

- Three different handle sets
 - **I** Original motion handles $h(q_0)$
 - Spacetime fit handles $h(q_s)$
 - **I** Transformed spacetime handles $\mathbf{h}(\mathbf{q}_t)$
- Compute final motion handles

. . . .

Reconstruction Algorithm

25

For each time *t* solve

minimize \mathbf{q}_{f} $E_{dm}(\mathbf{q}_{o}, \mathbf{q}_{f})$ subject to $\mathbf{h}(\mathbf{q}_{f}) = \mathbf{h}(\mathbf{q}_{o}) + (\mathbf{h}(\mathbf{q}_{f}) - \mathbf{h}(\mathbf{q}_{s}))$

Minimum Displaced Mass Objective

 $E_{dm}(\mathbf{q}_{o}, \mathbf{q}) \text{ evaluates } total \ displaced \ mass when moving a character from$

pose \mathbf{q}_{0} to pose \mathbf{q}

$$E_{dm} = \iiint_{i} \mu_{i} (\mathbf{p}_{i}(\mathbf{q}_{o}) - \mathbf{p}_{i}(\mathbf{q}))^{2} dx dy dz$$

Alternative Reconstruction Algorithm

26

For each time *t* solve

minimize

$$w_{dm} E_{dm} (\mathbf{q}_o, \mathbf{q}_f) + V_h \Big[(\mathbf{h}(\mathbf{q}_f) - \mathbf{h}(\mathbf{q}_o)) - (\mathbf{h}(\mathbf{q}_f) - \mathbf{h}(\mathbf{q}_s)) \Big]^2$$

Example: Human Broad Jump

- Original model has 59 DOFs
- Simplified model has *11* DOFs
- Entire upper body reduced to a mass point
- No joint angle DOFs

Future Work

- Optimal robots
- Extracting style
- Motion retargeting
- Building motion libraries
- Digital actors

33