
1

Ray Tracing

2

Reading

Foley et al., 16.12

Optional:
• Glassner, An introduction to Ray Tracing, Academic Press,

Chapter 1.

• T. Whitted. “An improved illumination model for shaded

display”. Communications of the ACM} 23(6), 343-349,
1980.

3

What is light
Descartes (ca. 1630)
• Light is a pressure phenomenon in the ``plenum''
Hooke (1665)
• Light is a rapid vibration -- first wave theory
Newton (1666)
• Refraction experiment revealed rectilinear propagation
• Light is a particle (corpuscular theory)
Young (1801)
• Two slit experiment
• Light is a wave
Maxwell (ca. 1860)
• Light is an electromagnetic disturbance
Einstein (1905)
• Light comes in quanta -- photons
Modern theory: wave-particle duality.

4

Geometric optics
We will take the view of geometric optics
• Light is a flow of photons with wavelengths. We'll call

these flows ``light rays.''

• Light rays travel in straight lines in free space.

• Light rays do not interfere with each other as they cross.

• Light rays obey the laws of reflection and refraction.

• Light rays travel form the light sources to the eye, but the
physics is invariant under path reversal (reciprocity).

2

5

Eye vs. Light
• Starting at the light (a.k.a. forward ray tracing, photon

tracing)

• Starting at the eye (a.k.a. backward ray tracing)

6

Hybrid methods
Local illulmination

• Cast one ray, shade according to light

Appel (1968)

• Cast one eye ray & one ray to light

7

Whitted (1980)
Eye ray tracing and rays to light & recursive ray tracing

8

Heckbert (1990)
Ray tracing & light ray tracing & light storage on surface

3

9

Veach (1995)
• Eye ray tracing & light ray tracing & path connection

10

Whitted ray-tracing algorithm
1. For each pixel, trace a primary ray to the first visible

surface

2. For each intersection trace secondary rays:
– Shadow rays in directions Li to light sources

– Reflected ray in direction R

– Refracted ray (transmitted ray) in direction T

11

Stages of Whitted ray-tracing

12

Why Ray Tracing?
• So far, we can do ray casting: for each pixel in the

projection plane, find the object visible at that pixel and
apply your favorite shading model.

• What does this model miss?

4

13

Forward Ray Tracing
• Rays emanate from light sources and bounce around in the scene.
• Rays that pass through the projection plane and enter the eye

contribute to the final image.

• What’s wrong with this method?

14

Backward Ray Tracing
• Rather than propagating rays indiscriminately from light

sources, we’d like to ask “which rays will definitely
contribute to the final image?”

• We can get a good approximation of the answer by firing
rays from the eye, through the projection plane and into the
scene
– These are the paths that light must have followed to affect the

image

15

Kinds of Rays
• A ray that leaves the eye and travels out to the scene is called a

primary ray.
• When a ray hits an object, we spawn three new (backward) rays to

collect light that must contribute to the incoming primary ray:
– Shadow rays to light sources, used to attenuate incoming light when

applying the shading model
– Reflection rays, which

model light bouncing
off of other surfaces
before hitting this surface

– Transparency rays, which
model light refracting
through the surface before
leaving along the primary

ray

• Shadow rays stop at light sources, but reflection and transparency rays
behave just like primary rays!

16

Example of Ray Tracing

5

17

The Ray Tree

18

Shading
If I(P, u) is the intensity seen from point P along direction u

where

Idirect is computed from the Phong model (next lecture)

(,) direct reflected transmittedI P I I I= + +u

(,)

(,)

reflected s

transmitted t

I k I P

I k I P

=

=

R

T

19

Reflection
• Reflected light from objects behaves like specular reflection from light

sources
– Reflectivity is just specular color
– Reflected light comes from direction of perfect specular reflection

20

Refraction

• Amount to transmit determined by transparency
coefficient, which we store explicitly

• T comes from Snell’s law

sin() sin()i i t tη θ η θ=

6

21

Total Internal Reflection
• When passing from a dense medium to a less dense

medium, light is bent further away from the surface normal

• Eventually, it can bend right past the surface!

• The θi that causes θt to exceed 90 degrees is called the
critical angle (θc). For θi greater than the critical angle, no
light is transmitted.

• A check for TIR falls out of the construction of T

cθ

22

Index of Refraction
• Real-world index of refraction is a complicated physical property of

the material

• IOR also varies with wavelength, and even temperature!

• How can we account for wavelength dependence when ray tracing?

23

Parts of a Ray Tracer
• What major components make up the core of a ray tracer?

24

Ray Tracing Pseudocode
color trace(point P0, direction D)

{

(P,Oi) = intersect(P0, D);

I = 0

for each light source l {

(P’, LightObj) = intersect(P, dir(P,l))

if LightObj = l {

I = I + I(l)

}

}

I = I + Obj.Ks * trace(P, R)

I = I + Obj.Kt * trace(P, T)

return I

}

7

25

Controlling Tree Depth
• Ideally, we’d spawn child rays at every object intersection

forever, getting a “perfect” color for the primary ray.

• In practice, we need heuristics for bounding the depth of
the tree (i.e., recursion depth)

• ?

26

Ray-Object Intersection
• Must define different intersection routine for each

primitive

• The bottleneck of the ray tracer, so make it fast!

• Most general formulation: find all roots of a function of
one variable

• In practice, many optimized intersection tests exist (see
Glassner)

27

Ray-Sphere Intersection

• Given a sphere centered at Pc =[0,0,0] with radius r and a
ray P(t) = P0 + tu, find the intersection(s) of P(t) with the
sphere.

28

Fast Failure
• We can greatly speed up ray-object intersection by identifying cheap

tests that guarantee failure
• Example: if origin of ray is outside sphere and ray points away from

sphere, fail immediately.

8

29

Ray-Polymesh Intersection

1. Use bounding sphere for fast failure
2. Test only front-facing polygons
3. Intersect ray with each polygon’s supporting plane
4. use a point-in-polygon test
5. Intersection point is smallest t

30

Object hierarchies and
ray intersection

How do we intersect with primitives transformed with affine
transformations?

31

Numerical Error
• Floating-point roundoff can add up in a ray tracer, and

create unwanted artifacts
– Example: intersection point calculated to be ever-so-slightly inside

the intersecting object. How does this affect child rays?

• Solutions:
– Perturb child rays

– Use global ray epsilon

32

Goodies

• There are some advanced ray tracing feature that self-
respecting ray tracers shouldn’t be caught without:
– Acceleration techniques

– Antialiasing

– CSG

– Distribution ray tracing

9

33

Acceleration Techniques
• Problem: ray-object intersection is very expensive

– make intersection tests faster

– do fewer tests

34

Hierarchical Bounding Volumes

• Arrange scene into a tree
– Interior nodes contain primitives with very simple intersection tests (e.g.,

spheres). Each node’s volume contains all objects in subtree
– Leaf nodes contain original geometry

• Like BSP trees, the potential benefits are big but the hierarchy is hard
to build

Intersect with largest
bounding volume

The intersect with children

Eventually, intersect with primitives

35

Spatial Subdivision

• Divide up space and record what objects are in each cell
• Trace ray through voxel array

Uniform subdivision
in 3D

Uniform subdivision
in 2D

Quadtree

Octree

36

Antialiasing
• So far, we have traced one ray through each pixel in the

final image. Is this an adequate description of the contents
of the pixel?

• This quantization through inadequate sampling is a form of
aliasing. Aliasing is visible as “jaggies” in the ray-traced
image.

• We really need to colour the pixel based on the average
colour of the square it defines.

10

37

Supersampling
• We can approximate the average colour of a pixel’s area

by firing multiple rays and averaging the result.

38

Adaptive Sampling
• Uniform supersampling can be wasteful if large parts of the pixel don’t

change much.
• So we can subdivide regions of the pixel’s area only when the image

changes in that area:

• How do we decide when to subdivide?

39

CSG
• CSG (constructive solid geometry) is an incredibly powerful way to

create complex scenes from simple primitives.

• CSG is a modeling technique; basically, we only need to modify ray-
object intersection.

40

CSG Implementation
• CSG intersections can be analyzed using “Roth diagrams”.

– Maintain description of all intersections of ray with primitive
– Functions to combine Roth diagrams under CSG operations

• An elegant and extremely slow system

11

41

Distribution Ray Tracing
• Usually known as “distributed ray tracing”, but it has nothing to do

with distributed computing

• General idea: instead of firing one ray, fire multiple rays in a jittered
grid

• Distributing over different dimensions gives different effects

• Example: what if we distribute rays over pixel area?

42

Disrtibuted ray tracing pseudocode
1. Partition pixel into 16 regions assigning them id 1-16

2. Partition the reflection direction into 16 angular regions
and assign an id (1-16) to each

3. Select sub pixel m=1

4. Cast a ray through m, jittered within its region

5. After finding an intersection, reflect into sub-direction m,
jittered within that region

6. Add result to current pixel total

7. Increment m and if m<= 16, go to step 4

8. Divide by 16, store result and move on to next pixel.

43

Distributing Reflections
• Distributing rays over

reflection direction gives:

44

Distributing Refractions
• Distributing rays over transmission direction gives:

12

45

Distributing Over Light Area
• Distributing over light

area gives:

46

Distributing Over Aperature
• We can fake distribution through a lens by choosing a

point on a finite aperature and tracing through the “in-
focus point”.

• What does this simulate?

47

Distributing Over Time
• We can endow models with velocity vectors and distribute

rays over time. this gives:

