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Ray Tracing
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Reading

Foley et al., 16.12

Optional:
• Glassner, An introduction to Ray Tracing, Academic Press, 

Chapter 1.

• T. Whitted. “An improved illumination model for shaded

display”. Communications of the ACM} 23(6), 343-349, 
1980.
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What is light
Descartes (ca. 1630)
• Light is a pressure phenomenon in the ``plenum''
Hooke (1665)
• Light is a rapid vibration -- first wave theory
Newton (1666)
• Refraction experiment revealed rectilinear propagation
• Light is a particle (corpuscular theory)
Young (1801)
• Two slit experiment
• Light is a wave
Maxwell (ca. 1860)
• Light is an electromagnetic disturbance
Einstein (1905)
• Light comes in quanta -- photons
Modern theory: wave-particle duality.
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Geometric optics
We will take the view of  geometric optics
• Light is a flow of photons with wavelengths.  We'll call 

these flows ``light rays.''

• Light rays travel in straight lines in free space.

• Light rays do not interfere with each other as they cross.

• Light rays obey the laws of reflection and refraction.

• Light rays travel form the light sources to the eye, but the 
physics is invariant under path reversal (reciprocity).
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Eye vs. Light
• Starting at the light (a.k.a. forward ray tracing, photon 

tracing)

• Starting at the eye (a.k.a. backward ray tracing)
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Hybrid methods
Local illulmination

• Cast one ray, shade according to light

Appel (1968)

• Cast one eye ray & one ray to light
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Whitted (1980)
Eye ray tracing and rays to light & recursive ray tracing
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Heckbert (1990)
Ray tracing & light ray tracing & light storage on surface
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Veach (1995)
• Eye ray tracing & light ray tracing & path connection
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Whitted ray-tracing algorithm 
1. For each pixel, trace a primary ray to the first visible 

surface

2. For each intersection trace secondary rays:
– Shadow rays in directions Li to light sources

– Reflected ray in direction R

– Refracted ray (transmitted ray) in direction T
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Stages of Whitted ray-tracing
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Why Ray Tracing?
• So far, we can do ray casting: for each pixel in the 

projection plane, find the object visible at that pixel and 
apply your favorite shading model.

• What does this model miss?
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Forward Ray Tracing
• Rays emanate from light sources and bounce around in the scene.
• Rays that pass through the projection plane and enter the eye 

contribute to the final image.

• What’s wrong with this method?
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Backward Ray Tracing
• Rather than propagating rays indiscriminately from light 

sources, we’d like to ask “which rays will definitely 
contribute to the final image?”

• We can get a good approximation of the answer by firing 
rays from the eye, through the projection plane and into the 
scene
– These are the paths that light must have followed to affect the 

image
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Kinds of Rays
• A ray that leaves the eye and travels out to the scene is called a 

primary ray.
• When a ray hits an object, we spawn three new (backward) rays to

collect light that must contribute to the incoming primary ray:
– Shadow rays to light sources, used to attenuate incoming light when 

applying the shading model
– Reflection rays, which 

model light bouncing 
off of other surfaces 
before hitting this surface

– Transparency rays, which 
model light refracting 
through the surface before
leaving along the primary 

ray

• Shadow rays stop at light sources, but reflection and transparency rays 
behave just like primary rays!
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Example of Ray Tracing
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The Ray Tree
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Shading
If I(P, u) is the intensity seen from point P along direction u

where

Idirect is computed from the Phong model (next lecture)
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Reflection
• Reflected light from objects behaves like specular reflection from light 

sources
– Reflectivity is just specular color
– Reflected light comes from direction of perfect specular reflection
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Refraction

• Amount to transmit determined by transparency 
coefficient, which we store explicitly

• T comes from Snell’s law

sin( ) sin( )i i t tη θ η θ=
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Total Internal Reflection
• When passing from a dense medium to a less dense 

medium, light is bent further away from the surface normal

• Eventually, it can bend right past the surface!

• The θi that causes θt to exceed 90 degrees is called the 
critical angle (θc).  For θi greater than the critical angle, no 
light is transmitted.

• A check for TIR falls out of the construction of T

cθ
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Index of Refraction
• Real-world index of refraction is a complicated physical property of 

the material

• IOR also varies with wavelength, and even temperature!

• How can we account for wavelength dependence when ray tracing?
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Parts of a Ray Tracer
• What major components make up the core of a ray tracer?
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Ray Tracing Pseudocode
color trace( point P0, direction D )

{

(P,Oi) = intersect( P0, D );

I = 0

for each light source l {

(P’, LightObj) = intersect(P, dir(P,l))

if LightObj = l {

I = I + I(l)

}

}

I = I + Obj.Ks * trace(P, R)

I = I + Obj.Kt * trace(P, T)

return I

}
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Controlling Tree Depth
• Ideally, we’d spawn child rays at every object intersection 

forever, getting a “perfect” color for the primary ray.

• In practice, we need heuristics for bounding the depth of 
the tree (i.e., recursion depth)

• ?
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Ray-Object Intersection
• Must define different intersection routine for each 

primitive

• The bottleneck of the ray tracer, so make it fast!

• Most general formulation: find all roots of a function of 
one variable

• In practice, many optimized intersection tests exist (see 
Glassner)
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Ray-Sphere Intersection

• Given a sphere centered at Pc =[0,0,0] with radius r and a 
ray P(t) = P0 + tu, find the intersection(s) of P(t) with the 
sphere.
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Fast Failure
• We can greatly speed up ray-object intersection by identifying cheap 

tests that guarantee failure
• Example: if origin of ray is outside sphere and ray points away from 

sphere, fail immediately.
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Ray-Polymesh Intersection

1. Use bounding sphere for fast failure
2. Test only front-facing polygons
3. Intersect ray with each polygon’s supporting plane
4. use a point-in-polygon test
5. Intersection point is smallest t
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Object hierarchies and 
ray intersection

How do we intersect with primitives transformed with affine
transformations?
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Numerical Error
• Floating-point roundoff can add up in a ray tracer, and 

create unwanted artifacts
– Example: intersection point calculated to be ever-so-slightly inside 

the intersecting object.  How does this affect child rays?

• Solutions:
– Perturb child rays

– Use global ray epsilon
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Goodies

• There are some advanced ray tracing feature that self-
respecting ray tracers shouldn’t be caught without:
– Acceleration techniques

– Antialiasing

– CSG

– Distribution ray tracing
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Acceleration Techniques
• Problem: ray-object intersection is very expensive

– make intersection tests faster

– do fewer tests
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Hierarchical Bounding Volumes

• Arrange scene into a tree
– Interior nodes contain primitives with very simple intersection tests (e.g., 

spheres).  Each node’s volume contains all objects in subtree
– Leaf nodes contain original geometry

• Like BSP trees, the potential benefits are big but the hierarchy is hard 
to build

Intersect with largest
bounding volume

The intersect with children

Eventually, intersect with primitives
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Spatial Subdivision

• Divide up space and record what objects are in each cell
• Trace ray through voxel array

Uniform subdivision
in 3D

Uniform subdivision
in 2D

Quadtree

Octree
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Antialiasing
• So far, we have traced one ray through each pixel in the 

final image.  Is this an adequate description of the contents 
of the pixel?

• This quantization through inadequate sampling is a form of 
aliasing.  Aliasing is visible as “jaggies” in the ray-traced 
image.

• We really need to colour the pixel based on the average 
colour of the square it defines.
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Supersampling
• We can approximate the average colour of a pixel’s area 

by firing multiple rays and averaging the result. 
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Adaptive Sampling
• Uniform supersampling can be wasteful if large parts of the pixel don’t 

change much.
• So we can subdivide regions of the pixel’s area only when the image 

changes in that area:

• How do we decide when to subdivide?
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CSG
• CSG (constructive solid geometry) is an incredibly powerful way to 

create complex scenes from simple primitives.

• CSG is a modeling technique; basically, we only need to modify ray-
object intersection.
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CSG Implementation
• CSG intersections can be analyzed using “Roth diagrams”.

– Maintain description of all intersections of ray with primitive
– Functions to combine Roth diagrams under CSG operations

• An elegant and extremely slow system
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Distribution Ray Tracing
• Usually known as “distributed ray tracing”, but it has nothing to do 

with distributed computing

• General idea: instead of firing one ray, fire multiple rays in a jittered 
grid

• Distributing over different dimensions gives different effects

• Example: what if we distribute rays over pixel area?
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Disrtibuted ray tracing pseudocode
1. Partition pixel into 16 regions assigning them id 1-16

2. Partition the reflection direction into 16 angular regions 
and assign an id (1-16) to each

3. Select sub pixel m=1

4. Cast a ray through m, jittered within its region

5. After finding an intersection, reflect into sub-direction m, 
jittered within that region

6. Add result to current pixel total

7. Increment m and if m<= 16, go to step 4

8. Divide by 16, store result and move on to next pixel.
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Distributing Reflections
• Distributing rays over 

reflection direction gives:
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Distributing Refractions
• Distributing rays over transmission direction gives:



12

45

Distributing Over Light Area
• Distributing over light 

area gives:
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Distributing Over Aperature
• We can fake distribution through a lens by choosing a 

point on a finite aperature and tracing through the “in-
focus point”.

• What does this simulate?
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Distributing Over Time
• We can endow models with velocity vectors and distribute 

rays over time.  this gives:


