

- treating rows of V as control points for curves $V_0(u), \ldots, V_n(u)$.
- treating $V_0(u), \ldots, V_n(u)$ as control points for a curve parameterized by v.

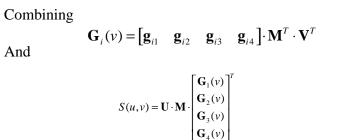
2

Geometry matrices

By transposing the geometry curve we get:

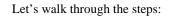
$$\mathbf{G}_{i}(v)^{T} = \left(\mathbf{V} \cdot \mathbf{M} \cdot \mathbf{g}_{i}\right)^{T}$$
$$= \mathbf{g}_{i}^{T} \cdot \mathbf{M}^{T} \cdot \mathbf{V}^{T}$$
$$= \begin{bmatrix} \mathbf{g}_{i1} & \mathbf{g}_{i2} & \mathbf{g}_{i3} & \mathbf{g}_{i4} \end{bmatrix} \cdot \mathbf{M}^{T} \cdot \mathbf{V}^{T}$$

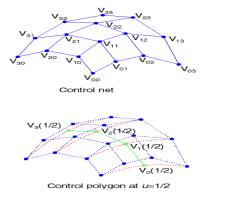
Geometry matrices

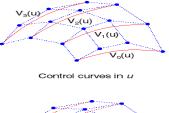


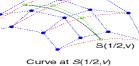
$$S(u,v) = \mathbf{U} \cdot \mathbf{M} \cdot \begin{bmatrix} \mathbf{g}_{11} & \mathbf{g}_{12} & \mathbf{g}_{13} & \mathbf{g}_{14} \\ \mathbf{g}_{21} & \mathbf{g}_{22} & \mathbf{g}_{23} & \mathbf{g}_{24} \\ \mathbf{g}_{31} & \mathbf{g}_{32} & \mathbf{g}_{33} & \mathbf{g}_{34} \\ \mathbf{g}_{41} & \mathbf{g}_{42} & \mathbf{g}_{43} & \mathbf{g}_{44} \end{bmatrix} \mathbf{M}^T \cdot \mathbf{V}^T$$

Tensor product surfaces, cont.



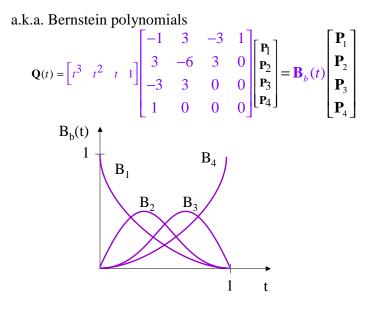






Which control points are interpolated by the surface?

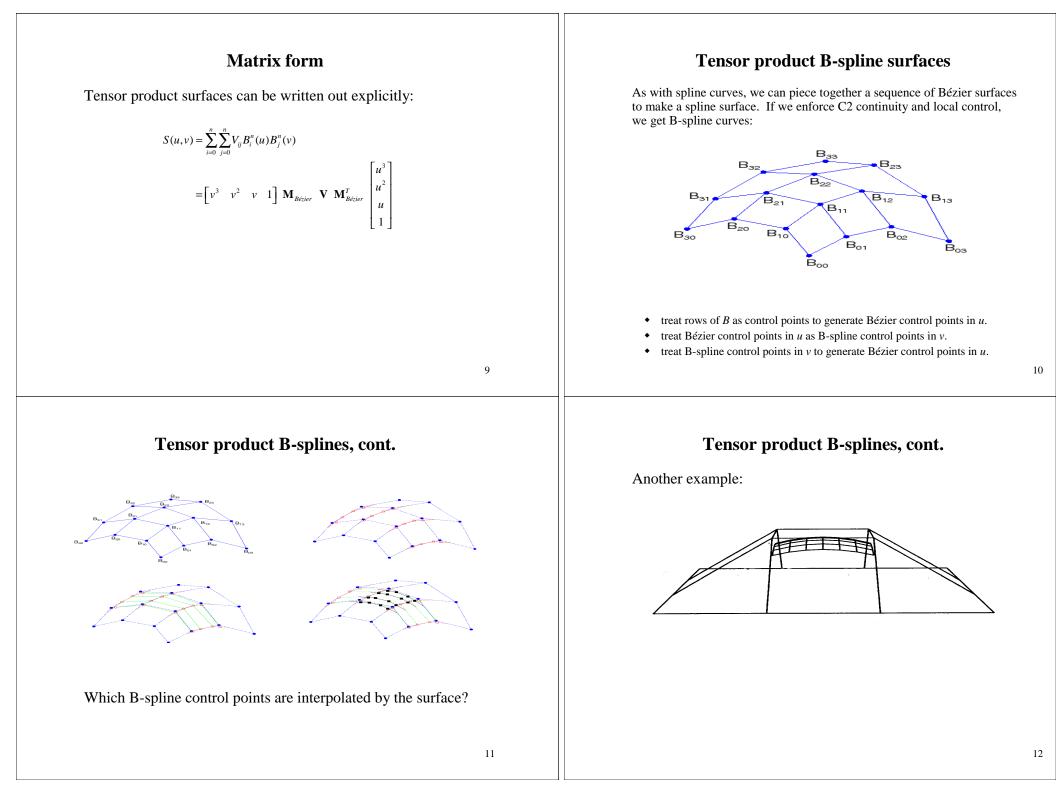
Bezier Blending Functions

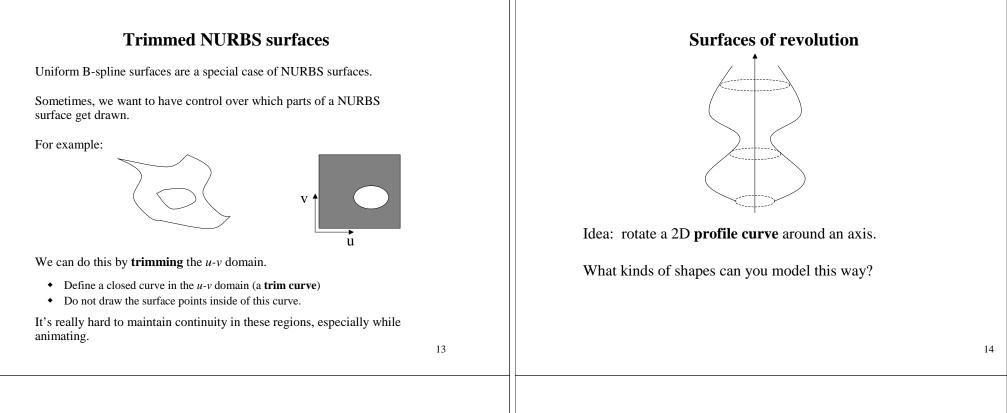


7

5

6





Variations

Several variations are possible:

- Scale *C*(*u*) as it moves, possibly using length of *T*(*v*) as a scale factor.
- Morph C(u) into some other curve C'(u) as it moves along T(v).
- ...

Constructing surfaces of revolution

Given: A curve C(u) in the *yz*-plane:

$$C(u) = \begin{bmatrix} 0 \\ c_y(u) \\ c_z(u) \\ 1 \end{bmatrix}$$

Let $R_x(\theta)$ be a rotation about the *x*-axis.

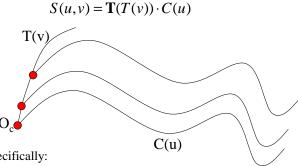
Find: A surface S(u,v) which is C(u) rotated about the *z*-axis.

 $S(u,v) = \mathbf{R}_{\mathbf{x}}(v) \cdot C(u)$

General sweep surfaces

The surface of revolution is a special case of a swept surface.

Idea: Trace out surface S(u,v) by moving a **profile curve** C(u) along a trajectory curve T(v).



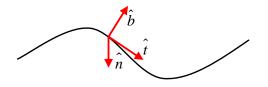
More specifically:

- Suppose that C(u) lies in an (x_c, y_c) coordinate system with origin O_c .
- For every point along T(v), lay C(u) so that O_c coincides with T(v).

17

Frenet frames

Motivation: Given a curve T(v), we want to attach a smoothly varying coordinate system.



To get a 3D coordinate system, we need 3 independent direction vectors.

 $\hat{t}(v) = normalize(T'(v))$ $\hat{b}(v) = normalize(T'(v) \times T''(v))$ $\hat{n}(v) = \hat{b}(v) \times \hat{t}(v)$

As we move along T(v), the Frenet frame (t,b,n) varies smoothly.

Orientation

The big issue:

• How to orient C(u) as it moves along T(v)?

Here are two options:

- 1. Fixed (or static): Just translate O_c along T(v).
- 2. Moving. Use the **Frenet frame** of T(v).
 - Allows smoothly varying orientation.
 - Permits surfaces of revolution, for example.

Frenet swept surfaces

Orient the profile curve C(u) using the Frenet frame of the trajectory T(v):

- Put *C*(*u*) in the **normal plane** *nb*.
- Place O_c on T(v).
- Align x_c for C(u) with -n.
- Align y_c for C(u) with b.

If T(v) is a circle, you get a surface of revolution exactly?

18

Summary	
What to take home:	
 How to construct tensor product Bézier surfaces How to construct tensor product B-spline surfaces Surfaces of revolution Construction of swept surfaces from a profile and trajectory curve With a fixed frame With a Frenet frame 	
21	