Reading

Foley 16.3

Optional

• Paul S. Heckbert. Survey of texture mapping. *IEEE Computer Graphics and Applications* 6(11): 56-67, November 1986

http://www.cs.cmu.edu/afs/cs/user/ph/www/texsurv.ps.gz

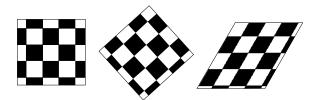
2

Texture mapping

Texture Mapping

Texture mapping allows you to take a simple polygon and give it the appearance of something much more complex

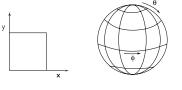
- Due to Ed Catmull, PhD thesis, 1974
- ensures that "all the right things" happen as a texture polygon is transformed and rendered

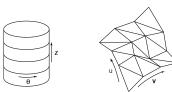

Non-parametric texture mapping

With non parametric texture mapping:

- Texture size and orientation are fixed
- Unrelated to size and orientation of polygon
- Gives a cookie-cutter effect

Parametric texture mapping

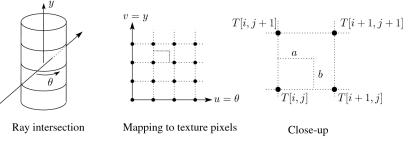



With parametric texture mapping, texture size and orientation are tied to the polygon:

- Separate texture space and screen space
- Texture the polygon as before but in texture space
- Deform (render) the textured polygon into screen space

Implementing texture mapping

Textures can be warped around many different surfaces:

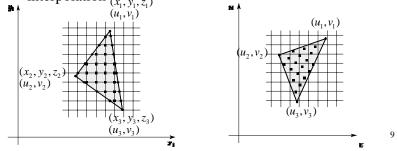


Computing (u,v) coordinates in a ray tracer is fairly straightforward

Texture resampling

What do we do when the texture sample lands between the texture pixels?

We resample. Common choice is **bilinear resampling**.


7

5

6

Implementing, cont.

- Texture mapping can also be handled in z-buffer algorithms
- Scan conversion is done in screen space, as usual
- Each pixel is colored according to the texture
- Texture coordinates are found by Gouraud-style interpolation (x. v. z.)

Computing average color

Computationally difficult part is summing over the covered pixels:

11

- Several methods have been used:
- 1. Brute force
 - Just sum
- 2. Mip maps
- 3. Summed Area Tables

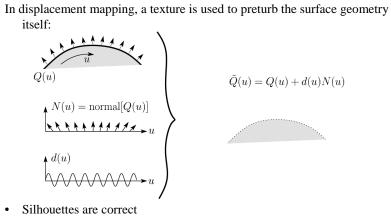
Antialiasing

• If you point-sample the texture map, you get aliasing:

• Proper antialiasing requires area averaging in the texture:

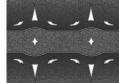
- Lance Williams, 1983
- "multum in parvo" many things in a small place
- Keep textures prefiltered at multiple resolutions

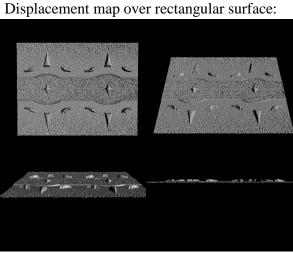
128x128 64x64 1x1 1x1 1. Figure out two closest levels 1. Enter interpolate between the two 1. State of the two closest levels 1. S	 Summed area tables Image: Strang of the strang of the		
Q: What would the mip map return for an average over a 65x65 neighborhood at (u,v)?	14		
Comparison of techniques	Solid textures Q: what kinds of artifacts might you see from using a marble veneer instead of a real marble? • One solution is to use solid textures • One solution is to use solid textures • Use model-space coordinates to index into a 3D texture • Like "carving" the object from the material One difficulty of solid texturing is coming up with the textures		


Solid textures, cont.

Instead of using texture coordinates to index into an image, use them to compute a function that defines the texture

17


Displacement mapping



• Requires doing additional hidden surface calculations

Displacement mapping, cont.

Input texture:

Bump mapping

Textures can be used for more than just color

$$I = k_a I_a + \sum_i f(d_i) I_{li} \left(k_d (\mathbf{N} \cdot \mathbf{L}_i)_+ + k_s (\mathbf{V} \cdot \mathbf{R})_+^{n_s} \right)$$

In bump mapping, a texture is used to perturb the normal:

• The normal is perturbed in each parametric direction according to the partial derivatives of the texture

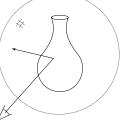
- These bumps "animate" with the surface
- **Q**: What artifacts in the images would reveal that bump mapping is fake?

18

Bump mapping example

Original rendering

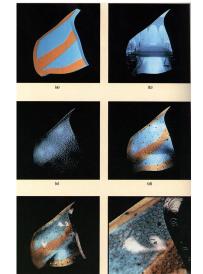
Rendering with bump map wrapped around a cylinder


21

Combining texture maps

• Using texture maps in combination give even better effects

Environment mapping



- A.k.a. reflection mapping
- Use texture to model object's environment
- Rays are bounced off objects into environment to determine color of illumination
- Works well when there is just a single object
- With some simplifications can be implemented in hardware
- Raytracer can be extended to handle refractions as well

Combining texture maps, cont.

22

G			
Summary			
What to take from this lecture:			
• What texture mapping is and what is it good for			
• Understanding the various approaches to antialiased			
textured mapping Brute force 			
 Brute force Mip maps 			
 Summed area tables 			
 Additional effect with texture mapping techniques 			
 Bump mapping 			
 Displacement mapping 			
 Environment mapping 			
	25		