

Affine Combination

Affine combination of two points: $Q=\alpha_{1} Q_{1}+\alpha_{2} Q_{2}$
where $\alpha_{1}+\alpha_{2}=1$ is defined to be the point $Q=Q_{1}+\alpha_{1}\left(Q_{2}-Q_{1}\right)$
We can generalize affine combination to multiple points:
$Q=\alpha_{1} Q_{1}+\alpha_{2} Q_{2}+\cdots+\alpha_{n} Q_{n}$
where

$$
\sum \alpha_{i}=1
$$

Affine Frame

A frame can be defined as a set of vectors and a point:

$$
\left(\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}, \mathbf{O}\right)
$$

Where $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ form a basis and O is a point in space.
Any point P can be written as

$$
P=p_{1} \mathbf{v}_{1}+\cdots+p_{n} \mathbf{v}_{n}+\mathrm{O}
$$

And any vector as:

$$
\mathbf{u}=u_{1} \mathbf{v}_{1}+\cdots+u_{n} \mathbf{v}_{n}
$$

Matrix representation of points and vectors

Coordinate axiom: $\quad 0 \cdot P=0$

$$
P=P
$$

So every point in the frame $\mathrm{F}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}, \mathrm{O}\right)$ can be written as

$$
P=p_{1} \mathbf{v}_{1}+p_{2} \mathbf{v}_{2}+\cdots+p_{n} \mathbf{v}_{n}+1 \cdot \mathrm{O}
$$

$$
=\left[\begin{array}{lllll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n} & \mathrm{O}\end{array}\right]\left[\begin{array}{c}p_{1} \\ p_{2} \\ \cdots \\ p_{n} \\ 1\end{array}\right]
$$

And every vector as
$\mathbf{u}=u_{1} \mathbf{v}_{1}+u_{2} \mathbf{v}_{2}+\cdots+u_{n} \mathbf{v}_{n}+0 \cdot \mathrm{O}$

$$
\mathbf{u}=u_{1} \mathbf{v}_{1}+u_{2} \mathbf{v}_{2}+\cdots+u_{n} \mathbf{v}_{n}+0 \cdot \mathrm{O}
$$

$$
\left.\begin{array}{c}
p_{n} \\
1
\end{array}\right]
$$

Changing frames

Given a point P in frame Φ, what are the coordinates of P in frame $\mathrm{F}^{\prime}=\left(\mathbf{v}_{1}^{\prime}, \mathbf{v}_{2}^{\prime}, \ldots, \mathbf{v}_{n}^{\prime}, \mathrm{O}^{\prime}\right)$

$$
P=\left[\begin{array}{lllll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n} & \mathrm{O}
\end{array}\right]\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\cdots \\
p_{n} \\
1
\end{array}\right]=\left[\begin{array}{lllll}
\mathbf{v}_{1}^{\prime} & \mathbf{v}_{2}^{\prime} & \cdots & \mathbf{v}_{n}^{\prime} & \mathrm{O}^{\prime}
\end{array}\right]\left[\begin{array}{c}
p_{1}^{\prime} \\
p_{2}^{\prime} \\
\cdots \\
p_{n}^{\prime} \\
1
\end{array}\right]
$$

Since each element of Φ can be written in coordinates relative to Φ^{\prime}

$$
\begin{aligned}
& \mathbf{v}_{i}=f_{i, 1} \mathbf{1}_{1}^{\prime}+\cdots+f_{i, n} \mathbf{v}_{n}^{\prime} \\
& \mathrm{O}=f_{n+1,1} \mathbf{v}_{1}^{\prime}+\cdots+f_{n+1, n} \mathbf{v}_{n}^{\prime}+\mathrm{O}^{\prime}
\end{aligned}
$$

Changing frames cont'd

Written in a matrix form

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
\mathbf{v}_{1}^{\prime} & \mathbf{v}_{2}^{\prime} & \cdots & \mathbf{v}_{n}^{\prime} & \mathrm{O}^{\prime}
\end{array}\right]\left[\begin{array}{c}
p_{1}^{\prime} \\
p_{2}^{\prime} \\
\cdots \\
p_{n}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lllll}
\mathbf{v}_{1}^{\prime} & \mathbf{v}_{2}^{\prime} & \cdots & \mathbf{v}_{n}^{\prime} & \mathrm{O}^{\prime}
\end{array}\right]\left[\begin{array}{cccc}
f_{1,1} & \cdots & f_{n, 1} & f_{n+1,1} \\
\vdots & \ddots & & \vdots \\
f_{1, n} & & f_{n, n} & f_{n+1, n} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\cdots \\
p_{n} \\
1
\end{array}\right] } \\
& {\left[\begin{array}{c}
p_{1}^{\prime} \\
p_{2}^{\prime} \\
\cdots \\
p_{n}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
f_{1,1} & \cdots & f_{n, 1} & f_{n+1,1} \\
\vdots & \ddots & & \vdots \\
f_{1, n} & & f_{n, n} & f_{n+1, n} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\cdots \\
p_{n} \\
1
\end{array}\right]=\mathbf{F}\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\cdots \\
p_{n} \\
1
\end{array}\right] }
\end{aligned}
$$

Euclidean and Cartesian spaces

A Euclidean space is an affine space with an inner product:

$$
\langle u, v\rangle=u \cdot v=u^{T} v
$$

A Cartesian space is a Euclidean space with a standard orthonormal frame. In 3D: (i, $\mathbf{j}, \mathbf{k}, \mathrm{O})$

$$
\mathbf{e}_{i} \cdot \mathbf{e}_{j}=\left\{\begin{array}{lc}
1 & \text { if } i=j \\
0 & \text { otherwise }
\end{array}\right.
$$

Affine Transformations

$F: A \rightarrow B$ is an affine transformation if it preserves affine
combinations: $\quad F\left(\sum \alpha_{i} Q_{i}\right)=\sum \alpha_{i} F\left(Q_{i}\right)$

Where $\sum \alpha_{i}=1$. The same applies to vectors.
Affine coordiantes are preserved: $\quad F\left(\mathrm{O}+\sum p_{i} \mathbf{v}_{i}\right)=F(\mathrm{O})+\sum p_{i} F\left(\mathbf{v}_{i}\right)$
Lines map to lines: $\quad F\left(P_{0}+\alpha \mathbf{v}\right)=F\left(P_{0}\right)+\alpha F(\mathbf{v})$
Paralelism is preserved: $\quad F\left(Q_{0}+\beta \mathbf{v}\right)=F\left(Q_{0}\right)+\beta F(\mathbf{v})$
Ratios are preserved: Ratio $\left(Q_{1}, Q, Q_{2}\right)=\operatorname{Ratio}\left(F\left(Q_{1}\right), F(Q), F\left(Q_{2}\right)\right)$
$F: A \rightarrow B$ is an affine transformation if it preserves affine

$$
F\left(\sum \alpha_{i} Q_{i}\right)=\sum \alpha_{i} F\left(Q_{i}\right)
$$

Where $\sum \alpha_{i}=1$. The same applies to vectors.
Affine coordiantes are preserved: $\quad F\left(\mathrm{O}+\sum p_{i} \mathbf{v}_{i}\right)=F(\mathrm{O})+\sum p_{i} F\left(\mathbf{v}_{i}\right)$
Lines map to lines: $\quad F\left(P_{0}+\alpha \mathbf{v}\right)=F\left(P_{0}\right)+\alpha F(\mathbf{v})$
Paralelism is preserved: $\quad F\left(Q_{0}+\beta \mathbf{v}\right)=F\left(Q_{0}\right)+\beta F(\mathbf{v})$
Ratios are preserved: $\operatorname{Ratio}\left(Q_{1}, Q, Q_{2}\right)=\operatorname{Ratio}\left(F\left(Q_{1}\right), F(Q), F\left(Q_{2}\right)\right)$

2D Affine Transformations
$\mathrm{P}=[\mathrm{x}, \mathrm{y}, 1]$ P is a column vector $P^{\prime}=\mathbf{M} P$ $\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$ \mathbf{P} is a row vector $P^{\prime}=P \mathbf{M}$ $\left[\begin{array}{lll}x^{\prime} & y^{\prime} & 1\end{array}\right]=\left[\begin{array}{lll}x & y & 1\end{array}\right]\left[\begin{array}{lll}a & d & 0 \\ b & e & 0 \\ c & f & 1\end{array}\right]$

Whearing
What about the off-diagonal elements?
The matrix $\quad\left[\begin{array}{lll}1 & 0 & 0 \\ d & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$x^{\prime}=x$
$y^{\prime}=d x+y$

Rotation around arbitrary point

Properties of Transforms

- Compact representation
- Fast implementation
- Easy to invert
- Easy to compose

