

Reading

• Foley, Section 11.2

Optional

• Bartels, Beatty, and Barsky. *An Introduction to Splines* for use in Computer Graphics and Geometric Modeling, 1987.

2

• Farin. Curves and Surfaces for CAGD: A Practical Guide, 4th ed., 1997.

Curves before computers

The "loftsman's spline":

- long, narrow strip of wood or metal
- shaped by lead weights called "ducks"
- gives curves with second-order continuity, usually

Used for designing cars, ships, airplanes, etc.

Cubic curves		
Fix n=3		
For simplicity we define each cubic function within the range $0 \le t \le 1$	<u>g</u> e	
$\mathbf{Q}(t) = \begin{bmatrix} x(t) & y(t) & z(t) \end{bmatrix}$		
$Q_x(t) = a_x t^3 + b_x t^2 + c_x t + d_x$ $Q_y(t) = a_y t^3 + b_y t^2 + c_y t + d_y$		
$Q_z(t) = a_z t^2 + b_z t^2 + c_z t + d_z$		
	7	

Compact representation	
Place all coefficients into a matrix	
$\mathbf{C} = \begin{bmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \\ d_x & d_y & d_z \end{bmatrix} \mathbf{T} = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix}$	
$Q(t) = [x(t) \ y(t) \ z(t)] = \begin{bmatrix} t^3 & t^2 & t \end{bmatrix} \begin{bmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \\ d_x & d_y & d_z \end{bmatrix}$	$= \mathbf{T} \cdot \mathbf{C}$
$\frac{d}{dt}Q(t) = Q'(t) = \frac{d}{dt}\mathbf{T} \cdot \mathbf{C} = \begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix} \cdot \mathbf{C}$	8

Constraining the cubics

Redefine **C** as a product of the **basis matrix M** and the 4-element column vector of constraints or **geometry vector G**

 $\mathbf{C} = \mathbf{M} \cdot \mathbf{G}$ $\mathbf{Q}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix} \begin{bmatrix} G_{1x} & G_{1y} & G_{1z} \\ G_{2x} & G_{2y} & G_{2z} \\ G_{3x} & G_{3y} & G_{3z} \\ G_{4x} & G_{4y} & G_{4z} \end{bmatrix}$ $= \mathbf{T} \cdot \mathbf{M} \cdot \mathbf{G}$

More complex curves		
Suppose we want to draw a more complex curve.		
Why not use a high-order Bézier?		
Instead, we'll splice together a curve from individual segments that are cubic Béziers.		
Why cubic?		
There are three properties we'd like to have in our newly constructed splines		
spines	27	

B-spline basis matrix

C² interpolating splines

38

Catmull-Rom basis matrix	
$\mathbf{Q}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \frac{1}{2} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 2 & -5 & 4 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{P}_0 \\ \mathbf{P}_1 \\ \mathbf{P}_2 \\ \mathbf{P}_3 \end{bmatrix}$	
	47

Catmull-Rom splines

The math for Catmull-Rom splines is pretty simple:

