Hidden Surfaces

Reading

¢ Foley et al, Chapter 15

The Quest for 3D

Congtruct a 3D hierarchical geometric model
Define avirtua camera
Map pointsin 3D space to pointsin an image

produce awireframe drawing in 2D from a 3D object

Of course, there’s more work to be done...

Introduction

« Not every part of every 3D object isvisible to aparticular
viewer. We need an algorithm to determine what parts of
each object should get drawn.

» Known as“hidden surface elimination” or “visible surface
determination”.

¢ Hidden surface elimination algorithms can be categorized
in three magjor ways:

— Object space vs. image space
— Object order vs. image order
— Sort first vs. sort last

Object Space Algorithms | mage Space Algorithms

Operate on geometric primitives « Operate on pixels
— For each object in the scene, compute the part of it which isn’t obscured — For each pixel in the scene, find the object closest to the COP which
by any other object, then draw. intersects the projector through that pixel, then draw.
— Must perform tests at high precision — Perform tests at device resolution, result works only for that resolution
— Resulting information is resolution-independent
« Complexity
Complexity — Must do something for every pixel in the scene, so at least O(R).
— Must compare every pair of objects, so O(n?) for n objects — Easiest solution is so test projector against every object, giving O(nR).
— Optimizations can reduce this cost, but... — Morereasonable version only does work for pixels belonging to objects:
— Best for scenes with few polygons or resolution-independent output O(nr), r is number of pixels per object
— Often, with more objects, each is smaller, so we estimate nr = O(R) in
practice

Implementation
— Difficult to implement!

— Must carefully control numerical error * Implementation

— Usudly very simple!

Object Order vs. Image Order Sort First vs. Sort L ast
e Sort first

Object (?rder . . — Find some depth-based ordering of the objects relative to the
— Consider each object only once - draw its pixels and move on to camera, then draw from back to front
the next object

. . L — Build an ordered data structure to avoid duplicating work
— Might draw the same pixel multiple times

Imace order e Sortlast
0 . ! . — Sort implicitly as more information becomes available
— Consider each pixel only once - draw part of an object and move
on to the next pixel

— Might compute relationships between objects multiple times

| mportant Algorithms
* Ray casting
* Binary space partitioning
o Z-buffer
» Back face culling

Ray Casting
« Partition the projection plane into pixelsto match screen
resolution
» For each pixel p;, construct ray from COP through PP at
that pixel and into scene
* Intersect the ray with every object in the scene, colour the
pixel according to the object with the closest intersection

10

Aside: Definitions
 An dgorithm exhibits coherenceif it uses knowledge
about the continuity of the objects on which it operates

* Anonline agorithm is onethat doesn’t need all the datato
be present when it tarts running
— Example: insertion sort

11

Ray Casting Analysis
Categorization:
* Easy toimplement?
¢ Hardware implementation?
* Coherence?
« Memory intensive?
* Pre-processing required?
¢ Online?
« Handles transparency?
¢ Handlesrefraction?
* Polygon-based?
« Extrawork for moving objects?
« Extrawork for moving viewer?
 Efficient shading?
¢ Handles cycles and self-intersections?

12

Binary Space Partitioning

e God: build atree that captures some relative depth
information between objects. Useit to draw objectsin the
right order.

— Tree doesn't depend on camera position, so we can change
viewpoint and redraw quickly

— Called the binary space partitioning tree, or
BSPtree

» Key observation: The polygonsin the scene are painted in
the correct order if for each polygon P,

— Polygons on the far side of P are painted first
— Pispainted next
— Polygonsin front of P are painted last

Buildinga BSP Tree (in 2D)

14

AlternateBSP Tree

BSP Tree Construction

BSPtree makeBSP(L: list of polygons)

{
if L is empty

{
}

return the empty tree

Choose a polygon P from L to serve as root

split all polygons in L according to P

return new TreeNode (
P,
makeBSP (polygons on negative side of P),
makeBSP (polygons on positive side of P))

» Splitting polygonsis expensive! It helpsto choose P
wisely at each step.
— Example: choose five candidates, keep the one that splits the
fewest polygons

16

BST TreeDisplay

showBSP(v: Viewer, T: BSPtree)
if T is empty then return

P := root of T
if viewer is in front of P
{
showBSP (back subtree of T)
draw P
showBSP(front subtree of T)
} else {
showBSP(front subtree of T)
draw P
showBSP (back subtree of T)

17

BSP Tree Analysis

Categorization:

« Easy toimplement?

¢ Hardware implementation?

* Coherence?

¢ Memory intensive?

¢ Pre-processing required?

¢ Online?

* Handles transparency?

* Handlesrefraction?

« Polygon-based?

« Extrawork for moving objects?
« Extrawork for moving viewer?
 Efficient shading?

« Handles cycles and self-intersections?

18

Z-buffer

Idea: dlong with a pixel’ s red, green and blue values, maintain some
notion of its depth

— An additional channel in memory, like alpha

— Called the depth buffer or Z-buffer

void draw_mode_setup(void) {
GlEnable (GL_DEPTH_TEST) ;

}

When the time comes to draw a pixel, compare its depth with the depth
of what' s already in the framebuffer. Replace only if it's closer
Very widely used
History

— Originally described as “ brute-force image space algorithm”

— Written off asimpractical algorithm for huge memories

— Today, done easily in hardware

19

Z-buffer Implementation

for each pixel p,

Z-buffer(p,] = FAR
Fb[p;] = BACKGROUND_COLOUR

}
for each polygon P
for each pixel p;, in the projection of P
Compute depth z and shade s of P at p;

if z < Z-buffer[p,]

{
z-buffer(p, | = z
Fblp;] =s

20

Visibility tricksfor Z-buffers

Z-buffering is the agorithm of choice for hardware rendering,
so let’ s think about how to make it run as fast as
possible...

What is the complexity of the Z-buffer agorithm?

¢ What can we do to decrease the congtants?

21

Z-buffer Tricks

¢ The shade of atriangle can be computed incrementally
from the shades of its vertices

¢ Can do the same with depth

(R,G,B,,2)

(RyG3B,2) |

B

(RyG2B2)

22

Depth Preserving
Conversion to Parallel Projection

Parallelpiped
i lume

View Vol
/%\ S

Z valueinterpolation

A

za/fp\zb Scan line N
v . z=2-(z-2) 2%
2 z, Yi— Y2
Ys _)yl_ys

24

Z-buffer Analysis

Categorization:

Easy to implement?

Hardware implementation?
Coherence?

Memory intensive?
Pre-processing required?
Online?

Handles transparency?

Handles refraction?
Polygon-based?

Extrawork for moving objects?
Extrawork for moving viewer?
Efficient shading?

Handles cycles and self-intersections?

Back Face Culling

Can be used in conjunction with polygon-based agorithms

Often, we don’t want to draw polygons that face away
from the viewer. So test for thisand eliminate (cull) back-
facing polygons before drawing

How can we test for this?

26

Summary

« Classification of hidden surface algorithms
» Understanding of Z-buffer
» Familiarity with BSP trees and back face culling

27

