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Hidden Surfaces
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Reading

• Foley et al, Chapter 15
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The Quest for 3D

• Construct a 3D hierarchical geometric model

• Define a virtual camera

• Map points in 3D space to points in an image

• produce a wireframe drawing in 2D from a 3D object

• Of course, there’s more work to be done…
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Introduction
• Not every part of every 3D object is visible to a particular

viewer. We need an algorithm to determine what parts of
each object should get drawn.

• Known as “hidden surface elimination” or “visible surface
determination”.

• Hidden surface elimination algorithms can be categorized
in three major ways:
– Object space vs. image space

– Object order vs. image order

– Sort first vs. sort last
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Object Space Algorithms
• Operate on geometric primitives

– For each object in the scene, compute the part of it which isn’t obscured
by any other object, then draw.

– Must perform tests at high precision

– Resulting information is resolution-independent

• Complexity
– Must compare every pair of objects, so O(n2) for n objects

– Optimizations can reduce this cost, but…

– Best for scenes with few polygons or resolution-independent output

• Implementation
– Difficult to implement!

– Must carefully control numerical error
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Image Space Algorithms
• Operate on pixels

– For each pixel in the scene, find the object closest to the COP which
intersects the projector through that pixel, then draw.

– Perform tests at device resolution, result works only for that resolution

• Complexity
– Must do something for every pixel in the scene, so at least O(R).

– Easiest solution is so test projector against every object, giving O(nR).

– More reasonable version only does work for pixels belonging to objects:
O(nr), r is number of pixels per object

– Often, with more objects, each is smaller, so we estimate nr = O(R) in
practice

• Implementation
– Usually very simple!
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Object Order vs. Image Order

• Object order
– Consider each object only once - draw its pixels and move on to

the next object

– Might draw the same pixel multiple times

• Image order
– Consider each pixel only once - draw part of an object and move

on to the next pixel

– Might compute relationships between objects multiple times
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Sort First vs. Sort Last
• Sort first

– Find some depth-based ordering of the objects relative to the
camera, then draw from back to front

– Build an ordered data structure to avoid duplicating work

• Sort last
– Sort implicitly as more information becomes available
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Important Algorithms
• Ray casting

• Binary space partitioning

• Z-buffer

• Back face culling
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Ray Casting
• Partition the projection plane into pixels to match screen

resolution

• For each pixel pi, construct ray from COP through PP at
that pixel and into scene

• Intersect the ray with every object in the scene, colour the
pixel according to the object with the closest intersection
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Aside: Definitions
• An algorithm exhibits coherence if it uses knowledge

about the continuity of the objects on which it operates

• An online algorithm is one that doesn’t need all the data to
be present when it starts running
– Example: insertion sort
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Ray Casting Analysis
Categorization:
• Easy to implement?
• Hardware implementation?
• Coherence?
• Memory intensive?
• Pre-processing required?
• Online?
• Handles transparency?
• Handles refraction?
• Polygon-based?
• Extra work for moving objects?
• Extra work for moving viewer?
• Efficient shading?
• Handles cycles and self-intersections?
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Binary Space Partitioning
• Goal: build a tree that captures some relative depth

information between objects. Use it to draw objects in the
right order.
– Tree doesn’t depend on camera position, so we can change

viewpoint and redraw quickly

– Called the binary space partitioning tree, or
BSP tree

• Key observation: The polygons in the scene are painted in
the correct order if for each polygon P,
– Polygons on the far side of P are painted first

– P is painted next

– Polygons in front of P are painted last
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Building a BSP Tree (in 2D)
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Alternate BSP Tree
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BSP Tree Construction
BSPtree makeBSP( L: list of polygons )
{

if L is empty
{

return the empty tree
}

Choose a polygon P from L to serve as root
Split all polygons in L according to P
return new TreeNode(

P,
makeBSP( polygons on negative side of P ),
makeBSP( polygons on positive side of P ))

}

• Splitting polygons is expensive! It helps to choose P
wisely at each step.
– Example: choose five candidates, keep the one that splits the

fewest polygons
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BST Tree Display

showBSP( v: Viewer, T: BSPtree )
{

if T is empty then return

P := root of T
if viewer is in front of P
{

showBSP( back subtree of T )
draw P
showBSP( front subtree of T )

} else {
showBSP( front subtree of T )
draw P
showBSP( back subtree of T )

}
}
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BSP Tree Analysis
Categorization:
• Easy to implement?
• Hardware implementation?
• Coherence?
• Memory intensive?
• Pre-processing required?
• Online?
• Handles transparency?
• Handles refraction?
• Polygon-based?
• Extra work for moving objects?
• Extra work for moving viewer?
• Efficient shading?
• Handles cycles and self-intersections?
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Z-buffer
• Idea: along with a pixel’s red, green and blue values, maintain some

notion of its depth
– An additional channel in memory, like alpha
– Called the depth buffer or Z-buffer

• When the time comes to draw a pixel, compare its depth with the depth
of what’s already in the framebuffer. Replace only if it’s closer

• Very widely used
• History

– Originally described as “brute-force image space algorithm”
– Written off as impractical algorithm for huge memories
– Today, done easily in hardware

void draw_mode_setup( void ) {
…
GlEnable( GL_DEPTH_TEST );
…

}
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Z-buffer Implementation

for each pixel pi
{

Z-buffer[ pi ] = FAR
Fb[ pi ] = BACKGROUND_COLOUR

}

for each polygon P
{

for each pixel pi in the projection of P
{

Compute depth z and shade s of P at pi
if z < Z-buffer[ pi ]
{

Z-buffer[ pi ] = z
Fb[ pi ] = s

}
}

}
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Visibility tricks for Z-buffers
Z-buffering is the algorithm of choice for hardware rendering,

so let’s think about how to make it run as fast as
possible…

What is the complexity of the Z-buffer algorithm?

• What can we do to decrease the constants?
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Z-buffer Tricks
• The shade of a triangle can be computed incrementally

from the shades of its vertices

• Can do the same with depth

(R1,G1,B1,z1)

(R2,G2,B2,z2)

(R3,G3,B3,z3)
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Depth Preserving
Conversion to Parallel Projection

normM
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Z value interpolation
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Z-buffer Analysis
Categorization:
• Easy to implement?
• Hardware implementation?
• Coherence?
• Memory intensive?
• Pre-processing required?
• Online?
• Handles transparency?
• Handles refraction?
• Polygon-based?
• Extra work for moving objects?
• Extra work for moving viewer?
• Efficient shading?
• Handles cycles and self-intersections?
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Back Face Culling
• Can be used in conjunction with polygon-based algorithms

• Often, we don’t want to draw polygons that face away
from the viewer. So test for this and eliminate (cull) back-
facing polygons before drawing

• How can we test for this?

27

Summary
• Classification of hidden surface algorithms

• Understanding of Z-buffer

• Familiarity with BSP trees and back face culling


