
1

Hierarchical Modeling

Symbols and instances

Most graphics APIs support a few geometric primitives:

� spheres

� cubes

� cylinders

These symbols are instanced using an instance
transformation.

Q: What is the matrix for the instance transformation above?

Instancing in OpenGL

In OpenGL, instancing is created by modifying the model-
view matrix:

Do the transforms seem to be backwards? Why was OpenGL
designed this way?

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glTranslatef(...);

glRotatef(...);

glScalef(...);

house();

Instancing in real OpenGL

The advantage of right-multiplication is that it places the
earlier transforms closer to the primitive.

glPushMatrix();

glTranslate(...);

glRotate(...);

house();

glPopMatrix();

glPushMatrix();

glTranslate(...);

glRotate(...);

house();

glPopMatrix();

2

Connecting Primitives 3D Example: A robot arm

Consider this robot arm with 3 degrees of freedom:

� Base rotates about its vertical axis by θ
� Lower arm rotates in its xy-plane by φ
� Upper arm rotates in its xy-plane by ψ

Q: What matrix do we use to transform the base?

Q: What matrix for the lower arm?

Q: What matrix for the upper arm?

Robot arm implementation

The robot arm can be displayed by keeping a global matrix and computing
it at each step:
Matrix M_model;

main()

{

. . .

robot_arm();

. . .

}

robot_arm()

{

M_model = R_y(theta);

base();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi);

upper_arm();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi)

*T(0,h2,0)*R_z(psi);

lower_arm();

}

Do the matrix computations seem wasteful?

Instead of recalculating the global matrix each time, we can just update it
in place:

Matrix M_model;

main()

{

. . .

M_model = Identity();

robot_arm();

. . .

}

robot_arm()

{

M_model *= R_y(theta);

base();

M_model *= T(0,h1,0)*R_z(phi);

upper_arm();

M_model *= T(0,h2,0)*R_z(psi);

lower_arm();

}

Robot arm implementation, better

3

OpenGL maintains a global state matrix called the model-
view matrix.

main()

{

. . .

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

robot_arm(a, b, c);

. . .

}

robot_arm(theta, phi, psi)

{

glRotatef(theta, 0.0, 1.0, 0.0);

base();

glTranslatef(0.0, h1, 0.0);

glRotatef(phi, 0.0, 0.0, 1.0);

lower_arm();

glTranslatef(0.0, h2, 0.0);

glRotatef(psi, 0.0, 0.0, 1.0);

upper_arm();

}

Robot arm implementation, OpenGL Hierarchical modeling

Hierarchical models can be composed of instances using trees
or DAGs:

� edges contain geometric transformations

� nodes contain geometry (and possibly drawing attributes)

A complex example: human figure

Q: What’s the most sensible way to traverse this tree?

Human figure implementation

The traversal can be implemented by saving the model-view
matrix on a stack:

figure()

{

glPushMatrix();

glTranslate(...);

glRotate(...);

torso();

glPushMatrix();

glTranslate(...);

glRotate(...);

head();

glPopMatrix();

glPushMatrix();

glTranslate(...);

glRotate(...);

left_upper_leg();

glPopMatrix();

. . .

glPopMatrix();

}

4

Animation

The above examples are called articulated models:

� rigid parts

� connected by joints

They can be animated by specifying the joint angles (or other
display parameters) as functions of time.

t1t1 t2t2

θθ

t1t1 t2t2

()tθ ()tθ

Scene graphs

The idea of hierarchical modeling can be extended to an
entire scene, encompassing:

� many different objects

� lights

� camera position

This is called a scene tree or scene graph.

object1camera light

Scene

object3object2

Summary

Here’s what you should take home from this lecture:

� How primitives can be instanced and composed to create
hierarchical models using geometric transforms.

� How transforms can be thought of as affecting either the geometry,
or the coordinate system which it is drawn in.

� How the notion of a model tree or DAG can be extended to entire
scenes.

