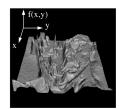
Image Processing

Definitions

- Many graphics techniques that operate only on images
- **Image processing**: operations that take images as input, produce images as output
- In its most general form, an image is a function f from R² to R
 - f(x, y) gives the intensity of a channel at position (x, y)
 - defined over a rectangle, with a finite range: $f: [a,b]X[c,d] \rightarrow [0,1]$
 - A color image is just three functions pasted together:
 - $f(x, y) = (f_r(x, y), f_g(x, y), f_b(x, y))$

Images as Functions



What is a digital image?

- In computer graphics, we usually operate on digital (discrete) images:
 - Sample the space on a regular grid
 - **Quantize** each sample (round to nearest integer)
- If our samples are Δ apart, we can write this as:

 $f[i,j] = \text{Quantize} \{ f(i \Delta, j \Delta) \}$

Image processing

- An **image processing** operation typically defines a new image g in terms of an existing image f.
- The simplest operations are those that transform each pixel in isolation. These pixel-to-pixel operations can be written: g(x, y) = t(f(x, y))

• Example: threshold, RGB \rightarrow grayscale • Note: a typical choice for mapping to grayscale is to apply the YIQ television matrix and keep the Y.

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.528 & 0.311 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Pixel Movement

• Some operations preserve intensities, but move pixels around in the image

$$f'(x, y) = f(g(x,y), h(x,y))$$

• Examples: many amusing warps of images

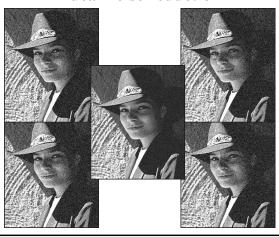
Noise

· Common types of noise:

- Salt and pepper noise: contains random occurences of black and white
- Impulse noise: contains random occurences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal

Ideal noise reduction

Ideal noise reduction



Noise Reduction

• How can we "smooth" away noise?

Convolution

- Convolution is a fancy way to combine two functions.
 - Think of f as an image and g as a "smear" operator
 - g determines a new intensity at each point in terms of intensities of a neighborhood of that point

$$\begin{array}{ll} h(x,y) \ = \ f(x,y) * g(x,y) \\ \\ = \ \int_{-\infty}^{\infty} f(x',y')g(x-x',y-y')dx'dy' \end{array}$$

• The computation at each point (*x*,*y*) is like the computation of cone responses

Convolution

- One of the most common methods for filtering an image is called **convolution**.
- In 1D, convolution is defined as:

$$\begin{split} g(x) &= f(x) * h(x) \\ &= \int\limits_{-\infty}^{\infty} f(x') h(x-x') dx' \\ &= \int\limits_{-\infty}^{\infty} f(x') h(x'-x) dx' \end{split} \qquad \text{where } h(x') = h(-x).$$

• Example:

Convolution in 2D

• In two dimensions, convolution becomes:

$$\begin{split} g(x,y) &= f(x,y) * h(x,y) \\ &= \int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} f(x',y') h(x-x',y-y') dx' dy' \\ &= \int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} f(x',y') h(x'-x,y'-y) dx' dy' \end{split}$$

where
$$h(x, y) = h(-x, -y)$$
.

• Similarly, discrete convolution in 2D becomes:

$$\begin{split} g[i,j] &= f[i,j] * h[i,j] \\ &= \sum_{k} \sum_{l} f[k,l] h[k-i,l-j] \\ &= \sum_{k} \sum_{l} f[k,l] h[i-k,j-l] \end{split}$$

where
$$h(j, j) = h[-i, -j]$$
.

Mean Filters

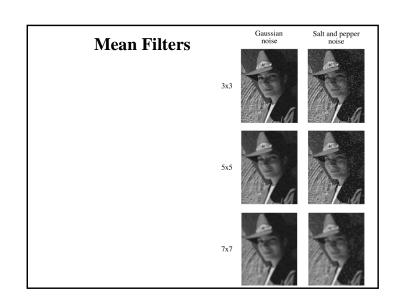
• How can we represent our noise-reducing averaging filter as a convolution diagram?

Convolution Representation

- Since f and g are defined over finite regions, we can write them out in two-dimensional arrays:
- Note: This is not matrix multiplication!

62	79	23	119	120	105	4	0
10	10	9	62	12	78	34	0
10	58	197	46	46	0	0	48
176	135	5	188	191	68	0	49
2	1	1	29	26	37	0	77
0	89	144	147	187	102	62	208
255	252	0	166	123	62	0	31
166	63	127	17	1	0	99	30

× 2	×0	× 2.
×0	× 2	×0
× 2	×0	× 2



Gaussian Filters

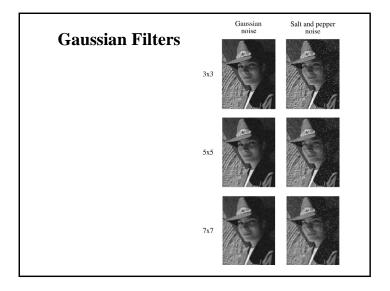
• Gaussian filters weigh pixels based on their distance to the location of convolution.

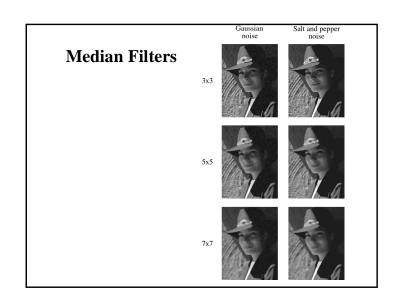
$$g[i,j] = e^{-(i^2+j^2)/(2\sigma^2)}$$

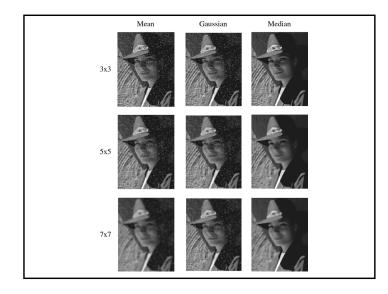
- Blurring noise while preserving features of the image
- Smoothing the same in all directions
- More significance to neighboring pixels
- Width parameterized by σ
- Gaussian functions are separable
- Convolving with multiple Gaussian filters results in a single Gausian filter

Median Filters

- A **Median Filter** operates over a kxk region by selecting the median intensity in the region.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?







Gradient

• The **gradient** is the 2D equivalent of the derivative:

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

- Properties of the gradient
 - It's a vector
 - Points in the direction of maximum increase of f
 - Magnitude is rate of increase
- How can we approximate the gradient in a discrete image?

Edge Detection

- One of the most important uses of image processing is **edge detection**
 - Really easy for humans
 - Really difficult for computers
 - Fundamental in computer vision
 - Important in many graphics applications
- What defines an edge?

Step	
Ramp	/
Line	
Roof	

Edge Detection Algorithms

- Edge detection algorithms typically proceed in three or four steps:
 - Filtering: cut down on noise
 - Enhancement: amplify the difference between edges and nonedges
 - Detection: use a threshold operation
 - Localization (optional): estimate geometry of edges beyond pixels

Edge Enhancement

• A popular gradient magnitude computation is the **Sobel operator**:

$$s_x = \left[\begin{array}{rrr} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{array} \right]$$

$$s_y = \left[egin{array}{ccc} 1 & 2 & 1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{array}
ight]$$

• We can then compute the magnitude of the vector (s_x, s_y)

Sobel Operator

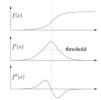
Smo

Sy+

Magnitude

d = 64

Second derivative operators



- The Sobel operator can produce thick edges. Ideally, we're looking for infinitely thin boundaries.
- An alternative approach is to look for local extrema in the first derivative: places where the change in the gradient is highest.
- Q: A peak in the first derivative corresponds to what in the second derivative?

Localization with the Laplacian

- An equivalent measure of the second derivative in 2D is the **Laplacian**: $\nabla^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$
- Using the same arguments we used to compute the gradient filters, we can derive a Laplacian filter to be:

$$\Delta^2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

• Zero crossings of this filter correspond to positions of maximum gradient. These zero crossings can be used to localize edges.

Laplacian of Gaussian

- Combines
 - Gaussian smoothing
 - Second derivative enhancement (Laplacian)

$$LoG(x, y) = \left(\frac{x^2 + y^2 - 2\sigma^2}{\sigma^4}\right) e^{\frac{-x^2 + y^2}{2\sigma^2}}$$

Summary

- Formal definitions of image and image processing
- Kinds of image processing: pixel-to-pixel, pixel movement, convolution, others
- Types of noise and strategies for noise reduction
- Definition of convolution and how discrete convolution works
- The effects of mean, median and Gaussian filtering
- How edge detection is done
- Gradients and discrete approximations