

```
Affine combination of two points:

Q = \alpha_1 Q_1 + \alpha_2 Q_2

where \alpha_1 + \alpha_2 = 1 is defined to be the point

Q = Q_1 + \alpha_1 (Q_2 - Q_1)

We can generalize affine combination to multiple points:

Q = \alpha_1 Q_1 + \alpha_2 Q_2 + L + \alpha_n Q_n

where

\sum \alpha_i = 1
```

Affine Frame

A frame can be defined as a set of vectors and a point: $(\mathbf{v}_1, \mathbf{L}, \mathbf{v}_n, \mathbf{O})$ Where $\mathbf{v}_1, \mathbf{L}, \mathbf{v}_n$ form a basis and O is a point in space.

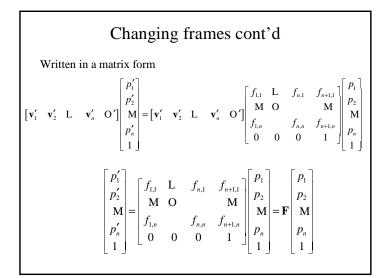
Any point P can be written as

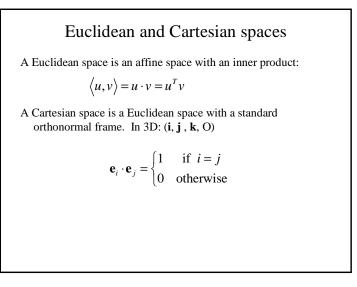
 $P = p_1 \mathbf{v}_1 + \mathbf{L} + p_n \mathbf{v}_n + \mathbf{O}$

And any vector as:

 $\mathbf{u} = u_1 \mathbf{v}_1 + \mathbf{L} + u_n \mathbf{v}_n$

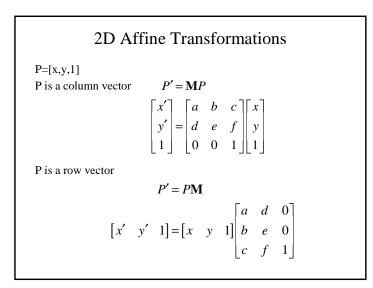
Matrix representation of points and vectors Coordinate axiom: $0 \cdot P = 0$ $\cdot P = P$ So every point in the frame $F = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{K}, \mathbf{v}_n, \mathbf{O})$ can be written as $P = p_1 \mathbf{v}_1 + p_2 \mathbf{v}_2 + \mathbf{L} + p_n \mathbf{v}_n + 1 \cdot \mathbf{O}$ $= [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \mathbf{L} \quad \mathbf{v}_n \quad \mathbf{O}] \begin{bmatrix} p_1 \\ p_2 \\ \mathbf{L} \\ p_n \\ 1 \end{bmatrix}$ And every vector as $\mathbf{u} = u_1 \mathbf{v}_1 + u_2 \mathbf{v}_2 + \mathbf{L} + u_n \mathbf{v}_n + 0 \cdot \mathbf{O}$ $= [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \mathbf{L} \quad \mathbf{v}_n \quad \mathbf{O}] \begin{bmatrix} u_1 \\ u_2 \\ \mathbf{L} \\ u_n \\ 0 \end{bmatrix}$ Changing frames Given a point *P* in frame Φ , what are the coordinates of *P* in frame F' = ($\mathbf{v}'_1, \mathbf{v}'_2, \mathbf{K}, \mathbf{v}'_n, \mathbf{O}'$) $P = [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \mathbf{L} \quad \mathbf{v}_n \quad \mathbf{O}] \begin{bmatrix} p_1 \\ p_2 \\ \mathbf{L} \\ p_n \\ 1 \end{bmatrix} = [\mathbf{v}'_1 \quad \mathbf{v}'_2 \quad \mathbf{L} \quad \mathbf{v}'_n \quad \mathbf{O}'] \begin{bmatrix} p'_1 \\ p'_2 \\ \mathbf{L} \\ p'_n \\ 1 \end{bmatrix}$ Since each element of Φ can be written in coordinates relative to Φ' $\mathbf{v}_i = f_{i,1}\mathbf{v}'_1 + \mathbf{L} + f_{i,n}\mathbf{v}'_n$ $\mathbf{O} = f_{n+1,1}\mathbf{v}'_1 + \mathbf{L} + f_{n+1,n}\mathbf{v}'_n + \mathbf{O}'$

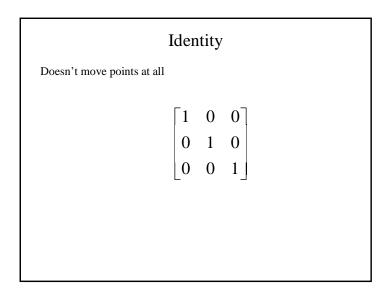


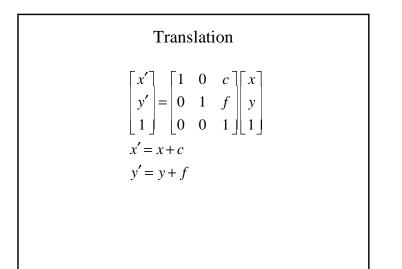


Useful properties and operations in Cartesian spaces Length: $|\mathbf{v}| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$ Distance between points: |P - Q|Angle between vectors: $\cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| \cdot |\mathbf{v}|}\right)$ Perpendicular (orthogonal): $\mathbf{u} \cdot \mathbf{v} = 0$ Parallel: $\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| \cdot |\mathbf{v}|} = \pm 1$ Cross product (in 3D): $\mathbf{u} \times \mathbf{v} = \mathbf{w}$

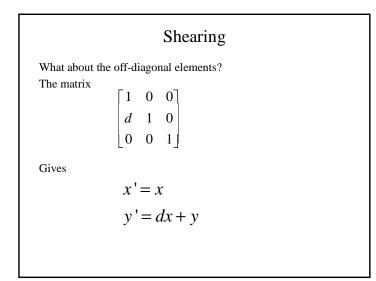
Affine Transformations
$F: A \to B \text{ is an affine transformation if it preserves affine combinations:} F\left(\sum \alpha_i Q_i\right) = \sum \alpha_i F(Q_i)$ Where $\sum \alpha_i = 1$. The same applies to vectors.
Affine coordiantes are preserved: $F(O + \sum p_i \mathbf{v}_i) = F(O) + \sum p_i F(\mathbf{v}_i)$
Lines map to lines: $F(P_0 + \alpha \mathbf{v}) = F(P_0) + \alpha F(\mathbf{v})$
Paralelism is preserved: $F(Q_0 + \beta \mathbf{v}) = F(Q_0) + \beta F(\mathbf{v})$
Ratios are preserved: $Ratio(Q_1, Q, Q_2) = Ratio(F(Q_1), F(Q), F(Q_2))$

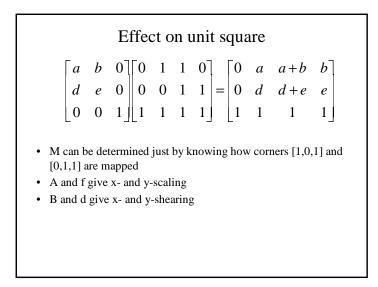


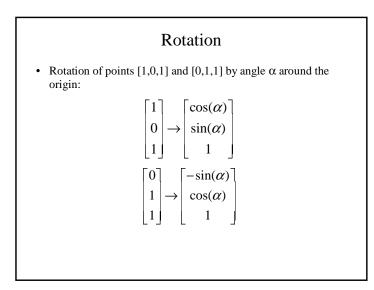




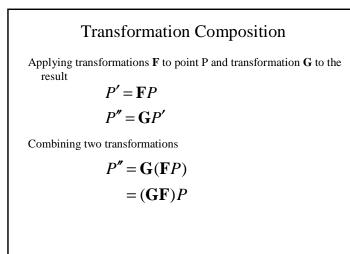
Scaling	
Changing the diagonal elements performs scaling $\begin{bmatrix} a & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{array}{c} x' = ax \\ y' = fy \end{array}$	
If <i>a=f</i> scaling is uniform	
What if $a, f < 0$ $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	







The Matrices			
Identity (do nothing): Scale by s_x in the x and s_y in the y direction ($s_x < 0$ or $s_y < 0$ is reflection):	$ \left(\begin{array}{rrrr} 1 & 0\\ 0 & 1\\ 0 & 0 \end{array}\right) $	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	
Rotate by angle θ (in radians):			$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
Shear by amount a in the x direction:	0 0		
Shear by amount b in the y direction:	$\begin{bmatrix} 1 & 0 \\ b & 1 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$	
Translate by the vector $(t_{x},t_{y}):$	$\left(\begin{array}{rrr}1&0\\0&1\\0&0\end{array}\right)$	$\begin{bmatrix} t_x \\ t_y \\ 1 \end{bmatrix}$	

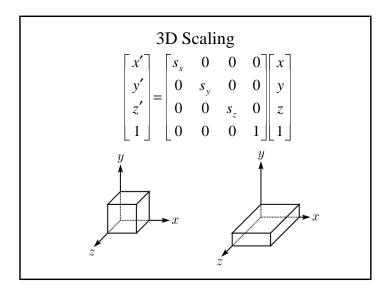


Rotation around arbitrary point

Reflection around arbitrary axis

Properties of Transforms

- Compact representation
- Fast implementation
- Easy to invert
- Easy to compose



3D F	Rotation	
Rotate by x-axis	1 0 0	0
	$0 \cos(\theta) -\sin(\theta)$	0
	$0 \sin(\theta) \cos(\theta)$	0
	0 0 0	1
Rotate by y-axis	$\cos(\theta) 0 -\sin(\theta)$	0
	0 1 0	0
	$\sin(\theta) = 0 \cos(\theta)$	0
	0 0 0	1
Rotate by z-axis	$\cos(\theta) - \sin(\theta) = 0$	0
	$\sin(\theta) \cos(\theta) = 0$	0
	0 0 1	0
	0 0 0	1
How can we rotate a	bout an <i>arbitrary lin</i>	e?

