
1

8. Texture Mapping

2

Reading

Required

Watt, intro to Chapter 8 and intros to 8.1, 8.4,
8.6, 8.8.

Recommended

Paul S. Heckbert. Survey of texture mapping.
IEEE Computer Graphics and Applications
6(11): 56--67, November 1986.

Optional

Watt, the rest of Chapter 8

Woo, Neider, & Davis, Chapter 9

James F. Blinn and Martin E. Newell. Texture
and reflection in computer generated images.
Communications of the ACM 19(10): 542--
547, October 1976.

3

Texture mapping

Texture mapping (Woo et al., fig. 9-1)

Texture mapping allows you to take a simple polygon
and give it the appearance of something much more
complex.

Due to Ed Catmull, PhD thesis, 1974

Refined by Blinn & Newell, 1976

Texture mapping ensures that “all the right things”
happen as a textured polygon is transformed and
rendered.

4

Non-parametric texture mapping

With “non-parametric texture mapping”:

Texture size and orientation are fixed

They are unrelated to size and orientation of
polygon

Gives cookie-cutter effect

5

Parametric texture mapping

With “parametric texture mapping,” texture size and
orientation are tied to the polygon.

Idea:

Separate “texture space” and “screen space”

Texture the polygon as before, but in texture
space

Deform (render) the textured polygon into
screen space

A texture can modulate just about any parameter –
diffuse color, specular color, specular exponent, …

6

Implementing texture mapping

A texture lives in it own abstract image coordinates
paramaterized by (u,v) in the range ([0..1], [0..1]):

It can be wrapped around many different surfaces:

Computing (u,v) texture coordinates in a ray tracer is
fairly straightforward.

Note: if the surface moves/deforms, the texture goes
with it.

u

v

1

1

0

u = x/w
v = y/h

u = φ/2π
v = θ/π

u = φ/2π
v = y/h

7

Mapping to texture image coords

The texture is usually stored as an image. Thus, we need
to convert from abstract texture coordinate:

(u,v) in the range ([0..1], [0..1])

to texture image coordinates:

(utex,vtex) in the range ([0.. wtex], [0.. htex])

Q: What do you do when the texture sample you need
lands between texture pixels?

Ray intersection Mapping to
texture pixel coords

(yQ, φQ)Q

v = y/h

u = φ/2πuQ

vQ

vtex = v htex

a

b

vtex = v wtex

Mapping to
abstract texture coords

8

Texture resampling

We need to resample the texture:

A common choice is bilinear interpolation:

()= + ∆ + ∆

= +

+ +

+ +

+ +

T(,) T ,

__________ T[,]

__________ T[1,]

__________ T[, 1]

__________ T[1, 1]

x ya b i j

i j

i j

i j

i j

Close-up

(a, b)∆x

∆y

Mapping to
texture pixel coords

vtex = v htex

a

b

vtex = v wtex

9

Solid textures

Q: What kinds of artifacts might you see from using a
marble veneer instead of real marble?

One solution is to use solid textures:

Use model-space coordinates to index into a 3D
texture

Like “carving” the object from the material

One difficulty of solid texturing is coming up with the
textures.

x

y

z

10

Solid textures (cont'd)

Here's an example for a vase cut from a solid marble
texture:

Solid marble texture by Ken Perlin, (Foley, IV-21)

11

Displacement mapping

Textures can be used for more than just color.

In displacement mapping, a texture is used to perturb
the surface geometry itself:

These displacements “animate” with the surface

Q: Do you have to do hidden surface calculations on Q?
~

Q(u)

N(u) = normal[Q(u)]

d(u)

Q(u) = Q(u) + d(u)N(u)
~

u

u

u

12

Bump mapping

In bump mapping, a texture is used to perturb the
normal:

Use the original, simpler geometry, Q(u), for
hidden surfaces

Use the normal from the displacement map for
shading:

N = normal[Q(u)]

Q: What artifacts in the images would reveal that
bump mapping is a fake?

~~

Q(u)

13

Displacement vs. bump mapping

Input texture

Rendered as displacement map over a rectangular surface

14

Displacement vs. bump mapping
(cont'd)

Original rendering Rendering with bump map
wrapped around a cylinder

Bump map and rendering by Wyvern Aldinger

15

Environment mapping

In environment mapping (also known as reflection
mapping), a texture is used to model an object's
environment:

Rays are bounced off objects into environment
Color of the environment used to determine
color of the illumination
Really, a simplified form of ray tracing
Environment mapping works well when there is
just a single object – or in conjunction with ray
tracing

Under simplifying assumptions, environment
mapping can be implemented in hardware.

With a ray tracer, the concept is easily extended to
handle refraction as well as reflection.

16

Combining texture maps

Using texture maps in combination gives even better
effects, as Young Sherlock Holmes demonstrated …

Construction of the glass knight, (Foley, IV-24)

17

Combining texture maps (cont'd)

Phong lighting Environment-
with mapped

diffuse texture mirror reflection

Bump mapping + Combine textures
Glossy reflection and add dirt

Rivet stains +
Shinier reflections Close-up

Construction of the glass knight, (Foley, IV-24)

18

Antialiasing textures

If you render an object with a texture map using
point-sampling, you can get aliasing:

From Crow, SIGGRAPH '84

Proper antialiasing requires area averaging over
pixels:

From Crow, SIGGRAPH '84

In some cases, you can average directly over the
texture pixels to do the anti-aliasing.

19

Computing the average color

The computationally difficult part is summing over
the covered pixels.

Several methods have been used.

The simplest is brute force:

Figure out which texels are covered and add up
their colors to compute the average.

20

Mip maps

A faster method is mip maps developed by Lance
Williams in 1983:

Stands for “multum in parvo” – many things in
a small place

Keep textures prefiltered at multiple
resolutions

Has become the graphics hardware standard

128x128 64x64 1x1. . .

magnify

21

T0

T1

T3

T2

T4Mip map pyramid

The mip map hierarchy can be thought of as an
image pyramid:

Level 0 (T0[i,j]) is the original image.

Level 1 (T1[i,j]) averages over 2x2
neighborhoods of original.

Level 2 (T2[i,j]) averages over 4x4
neighborhoods of original

Level 3 (T3[i,j]) averages over 8x8
neighborhoods of original

What’s a fast way to pre-compute the texture map for
each level?

22

Mip map resampling

What would the mip-map return for an average over
a 5x5 neighborhood at location (u0,v0)?

How do we measure the fractional distance between
levels?

What if you need to average over a non-square
region?

T1

T2

(u0, v0)
4x4

u
v

v

u

5x5

8x8
Filter size

23

Summed area tables

A more accurate method than mip maps is summed
area tables invented by Frank Crow in 1984.

Recall from calculus:

In discrete form:

Q: If we wanted to do this real fast, what might we
pre-compute?

−∞ −∞

= −() () ()
b b a

a

f x dx f x dx f x dx

= = =

= −
0 0

[] [] []
m m k

i k i i

f i f i f i

24

Summed area tables (cont’d)

We can extend this idea to 2D by creating a table,
S[i,j], that contains the sum of everything below and
to the left.

Q: How do we compute the average over a region
from (l, b) to (r, t)?

Characteristics:

Requires more memory
Gives less blurry textures

l

b

t

r

S[i, j]

25

Comparison of techniques

Point sampled

MIP-mapped

Summed
area table

From Crow, SIGGRAPH '84

26

Summary

What to take home from this lecture:

1. The meaning of the boldfaced terms.

2. Familiarity with the various kinds of texture
mapping, including their strengths and
limitations.

3. Understanding of the various approaches to
antialiased texture mapping:

Brute force

Mip maps

Summed area tables

