
1

8. Texture Mapping
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Reading

Required

Watt, intro to Chapter 8 and intros to 8.1, 8.4, 
8.6, 8.8.

Recommended

Paul S. Heckbert.  Survey of texture mapping. 
IEEE Computer Graphics and Applications
6(11): 56--67, November 1986.

Optional

Watt, the rest of Chapter 8

Woo, Neider, & Davis, Chapter 9

James F. Blinn and Martin E. Newell.  Texture 
and reflection  in computer generated images.  
Communications of the ACM 19(10):  542--
547, October 1976.
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Texture mapping

Texture mapping (Woo et al., fig. 9-1)

Texture mapping allows you to take a simple polygon 
and give it the appearance of something much more 
complex.

Due to Ed Catmull, PhD thesis, 1974

Refined by Blinn & Newell, 1976

Texture mapping ensures that “all the right things” 
happen as a textured polygon is transformed and 
rendered.
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Non-parametric texture mapping

With “non-parametric texture mapping”:

Texture size and orientation are fixed

They are unrelated to size and orientation of 
polygon

Gives cookie-cutter effect
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Parametric texture mapping

With “parametric texture mapping,” texture size and 
orientation are tied to the polygon.

Idea:

Separate “texture space” and “screen space”

Texture the polygon as before, but in texture 
space

Deform (render) the textured polygon into 
screen space

A texture can modulate just about any parameter –
diffuse color, specular color, specular exponent, …
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Implementing texture mapping

A texture lives in it own abstract image coordinates
paramaterized by (u,v) in the range ([0..1], [0..1]):

It can be wrapped around many different surfaces:

Computing (u,v) texture coordinates in a ray tracer is 
fairly straightforward. 

Note: if the surface moves/deforms, the texture goes 
with it.

u

v

1

1

0

u = x/w
v = y/h

u = φ/2π
v = θ/π

u = φ/2π
v = y/h

7

Mapping to texture image coords

The texture is usually stored as an image.  Thus, we need 
to convert from abstract texture coordinate:

(u,v) in the range ([0..1], [0..1])

to texture image coordinates:

(utex,vtex) in the range ([0.. wtex], [0.. htex])

Q: What do you do when the texture sample you need 
lands between texture pixels?

Ray intersection Mapping to 
texture pixel coords

(yQ, φQ)Q

v = y/h

u = φ/2πuQ

vQ

vtex = v htex

a

b

vtex = v wtex

Mapping to 
abstract texture coords

8

Texture resampling

We need to resample the texture:

A common choice is bilinear interpolation:
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Solid textures

Q: What kinds of artifacts might you see from using a 
marble veneer instead of real marble?

One solution is to use solid textures:

Use model-space coordinates to index into a 3D 
texture

Like “carving” the object from the material

One difficulty of solid texturing is coming up with the 
textures.

x

y

z
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Solid textures (cont'd)

Here's an example for a vase cut from a solid marble 
texture:

Solid marble texture by Ken Perlin, (Foley, IV-21)
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Displacement mapping

Textures can be used for more than just color.

In displacement mapping, a texture is used to perturb 
the surface geometry itself:

These displacements “animate” with the surface

Q: Do you have to do hidden surface calculations on Q?
~

Q(u)

N(u) = normal[Q(u)]

d(u)

Q(u) = Q(u) + d(u)N(u)
~

u

u

u
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Bump mapping

In bump mapping, a texture is used to perturb the 
normal:

Use the original, simpler geometry, Q(u), for 
hidden surfaces

Use the normal from the displacement map for 
shading:

N = normal[Q(u)]

Q: What artifacts in the images would reveal that 
bump mapping is a fake?

~~

Q(u)
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Displacement vs. bump mapping

Input texture

Rendered as displacement map over a rectangular surface
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Displacement vs. bump mapping 
(cont'd)

Original rendering Rendering with bump map 
wrapped around a cylinder

Bump map and rendering by Wyvern Aldinger
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Environment mapping

In environment mapping (also known as reflection 
mapping), a texture is used to model an object's 
environment:

Rays are bounced off objects into environment
Color of the environment used to determine 
color of the illumination
Really, a simplified form of ray tracing
Environment mapping works well when there is 
just a single object – or in conjunction with ray 
tracing

Under simplifying assumptions, environment 
mapping can be implemented in hardware.

With a ray tracer, the concept is easily extended to 
handle refraction as well as reflection.
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Combining texture maps

Using texture maps in combination gives even better 
effects, as Young Sherlock Holmes demonstrated …

Construction of the glass knight, (Foley, IV-24)
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Combining texture maps (cont'd)

Phong lighting Environment-
with mapped

diffuse texture mirror reflection

Bump mapping + Combine textures
Glossy reflection and add dirt

Rivet stains +
Shinier reflections Close-up

Construction of the glass knight, (Foley, IV-24)
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Antialiasing textures

If you render an object with a texture map using 
point-sampling, you can get aliasing:

From Crow, SIGGRAPH '84

Proper antialiasing requires area averaging over 
pixels:

From Crow, SIGGRAPH '84

In some cases, you can average directly over the 
texture pixels to do the anti-aliasing.
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Computing the average color

The computationally difficult part is summing over
the covered pixels.  

Several methods have been used.

The simplest is brute force: 

Figure out which texels are covered and add up 
their colors to compute the average.
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Mip maps

A faster method is mip maps developed by Lance 
Williams in 1983:

Stands for “multum in parvo” – many things in 
a small place

Keep textures prefiltered at multiple 
resolutions

Has become the graphics hardware standard

128x128 64x64 1x1. . .

magnify
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T0

T1

T3

T2

T4Mip map pyramid

The mip map hierarchy can be thought of as an 
image pyramid:

Level 0 (T0[i,j]) is the original image.

Level 1 (T1[i,j]) averages over 2x2 
neighborhoods of original.

Level 2 (T2[i,j]) averages over 4x4 
neighborhoods of original

Level 3 (T3[i,j]) averages over 8x8 
neighborhoods of original

What’s a fast way to pre-compute the texture map for 
each level?
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Mip map resampling

What would the mip-map return for an average over 
a 5x5 neighborhood at location (u0,v0)?

How do we measure the fractional distance between 
levels?

What if you need to average over a non-square 
region?

T1

T2

(u0, v0)
4x4

u
v

v

u

5x5

8x8
Filter size
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Summed area tables

A more accurate method than mip maps is summed 
area tables invented by Frank Crow in 1984.

Recall from calculus:

In discrete form:

Q: If we wanted to do this real fast, what might we 
pre-compute?
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Summed area tables (cont’d)

We can extend this idea to 2D by creating a table, 
S[i,j], that contains the sum of everything below and 
to the left.

Q: How do we compute the average over a region 
from (l, b) to (r, t)?

Characteristics:

Requires more memory
Gives less blurry textures

l

b

t

r

S[i, j]



25

Comparison of techniques

Point sampled

MIP-mapped

Summed
area table

From Crow, SIGGRAPH '84
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Summary

What to take home from this lecture:

1. The meaning of the boldfaced terms.

2. Familiarity with the various kinds of texture 
mapping, including their strengths and 
limitations.

3. Understanding of the various approaches to
antialiased texture mapping:

Brute force

Mip maps

Summed area tables


