
1

9. Distribution Ray Tracing

2

Reading

Required:

Watt, sections 10.6 ,14.8.

Further reading:

A. Glassner. An Introduction to Ray Tracing.
Academic Press, 1989. [In the lab.]

3

Pixel anti-aliasing

I x xd
pixel

()

No anti-aliasing

Pixel anti-aliasing

4

Simulating gloss and translucency

The resulting rendering can still have a form of
aliasing, because we are undersampling reflection
(and refraction).

For example:

Distributing rays over reflection directions gives:

R

T

5

Reflection anti-aliasing

I fin in out inr d
H

() (,)w w w wò

Reflection anti-aliasing

6

Full anti-aliasing

I fin in out inr d
H

() (,)w w w wò

I x xd
pixel

()ò

Full anti-aliasing…lots of nested integrals!

Computing these integrals is prohibitively
expensive.

We’ll look at ways to approximate integrals…

7

Approximating integrals

Let’s say we want to compute the integral of a
function:

If f(x) is not known analytically, but can be evaluated,
then we can approximate the integral by:

Evaluating an integral in this manner is called
quadrature.

()F f x dx=

1
()F f i x

n
≈ ∆

8

Integrals as expected values

An alternative to distributing the sample positions
regularly is to distribute them stochastically.

Let’s say the position in x is a random variable X, which
is distributed according to p(x), a probability density
function (strictly positive that integrates to unity).

Now let’s consider a function of that random variable,
f(X)/p(X). What is the expected value of this new
random variable?

First, recall the expected value of a function g(X):

Then, the expected value of f(X)/p(X) is:

[()] () ()E g X g x p x dx=

9

Monte Carlo integration

Thus, given a set of samples positions, Xi, we can
estimate the integral as:

This procedure is known as Monte Carlo integration.

The trick is getting as accurate as possible with as few
samples as possible.

More concretely, we would like the variance of the
estimate of the integral to be low:

The name of the game is variance reduction…

1 ()

()
i

i

f X
F

n p X
≈

2 2
() () ()

() () ()

f X f X f X
V E E

p X p X p X
= −

10

Uniform sampling

One approach is uniform sampling (i.e., choosing X
from a uniform distribution):

11

Importance sampling

A better approach, if f(x) is positive, would be to
choose p(x) ~ f(x). In fact, this choice would be optimal.

Why don’t we just do that?

Alternatively, we can use heuristics to guess where f(x)
will be large. This approach is called importance
sampling.

12

Importance sampling

We can apply this idea to ray tracing where we treat
each ray path as a sample. This approach is called
Monte Carlo path tracing.

Uniform sampling

Importance sampling

13

Stratified sampling

Another method that gives faster convergence is
stratified sampling.

E.g., for sub-pixel samples:

We call this a jittered sampling pattern.

14

Distribution ray tracing

These ideas can be combined to give a particular
method called distribution ray tracing:

uses non-uniform (jittered) samples.

replaces aliasing artifacts with noise.

provides additional effects by distributing rays
to sample:

• Reflections and refractions

• Light source area

• Camera lens area

• Time

[Originally called “distributed ray tracing,” but we will
call it distribution ray tracing so as not to confuse
with parallel computing.]

15

DRT pseudocode

TraceImage() looks basically the same, except now
each pixel records the average color of jittered sub-
pixel rays.

function traceImage (scene):

for each pixel (i, j) in image do

I(i, j) ← 0

for each sub-pixel id in (i,j) do

s ← pixelToWorld(jitter(i, j, id))

p ← COP

d ←(s - p).normalize()

I(i, j) ← I(i, j) + traceRay(scene, p, d, id)

end for

I(i, j) I(i, j)/numSubPixels

end for

end function

A typical choice is numSubPixels = 4*4.

16

DRT pseudocode (cont’d)

Now consider traceRay(), modified to handle (only)
opaque glossy surfaces:

function traceRay(scene, p, d):

(q, N, material) ← intersect (scene, p, d)

I ← shade(…)

R ← jitteredReflectDirection(N, -d, id)

I ← I + material.kr ∗ traceRay(scene, q, R)

return I

end function

17

Pre-sampling glossy reflections

18

Distributing rays over light source area gives:

Surface

Occluder

Light

Umbra

Penumbra

Soft shadows

19

Pinhole cameras in the real world require small apertures
to keep the image in focus.

Lenses focus a bundle of rays to one point => can have
larger aperture.

For a “thin” lens, we can approximately calculate where an
object point will be in focus using the the Gaussian lens
formula:

where f is the focal length of the lens.

Lenses

fdd io

111 =+

odid

f

20

Depth of field

Lenses do have some limitations.

The most noticeable is the fact that points that are not in
the object plane will appear out of focus.

The depth of field is a measure of how far from the object
plane points can be before appearing “too blurry.”

image object

21

Simulating depth of field

Distributing rays over a finite aperture gives:

Image plane Plane in focus

Aperture

Lens

22

In general, you can trace rays through a scene and
keep track of their id’s to handle all of these effects:

Chaining the ray id’s

23

DRT to simulate _________________

Distributing rays over time gives:

