
1

11. Parametric curves

2

Reading

Required:

Watt, 3 (intro), 3.1, 3.2 (intro), 3.2.1, 3.2.2

Optional

Bartels, Beatty, and Barsky.  An Introduction to 
Splines for use in Computer Graphics and 
Geometric Modeling, 1987.

Farin. Curves and Surfaces for CAGD:  A Practical 
Guide, 4th ed., 1997.

3

Curves before computers

The “loftsman’s spline”:

long, narrow strip of wood or metal

shaped by lead weights called “ducks”

gives curves with second-order continuity, 
usually

Used for designing cars, ships, airplanes, etc.

But curves based on physical artifacts can’t be 
replicated well, since there’s no exact definition of 
what the curve is.

Around 1960, a lot of industrial designers were 
working on this problem.

Today, curves are easy to manipulate on a computer 
and are used for CAD, art, animation, …

4

Mathematical curve representation

Explicit   y=f(x)
• what if the curve isn’t a function, e.g., a circle?

Implicit   g(x,y) = 0

Parametric   (x(u),y(u))
• For the circle:

x(u) = cos 2πu

y(u) = sin 2πu



5

Parametric polynomial curves

We’ll use parametric curves, Q(u)=(x(u),y(u)), where 
the functions are all polynomials in the parameter.

Advantages:

easy (and efficient) to compute

infinitely differentiable

We’ll also assume that u varies from 0 to 1.

=

=

=

=

n

k

k
k

n

k

k
k

ubuy

uaux

0

0

)(

)(

6

Recursive interpolation:

What if u=0?

What if u=1?

de Casteljau’s algorithm

V0

V1 V2

V3

7

Recursive notation:

What is the equation for        ?

de Casteljau’s algorithm, cont’d

1
0V

V1 V2

V3

V0

Q(u)

V1
1

V0
1

V2
1

V0
2

V1
2

8

Finding Q(u)

Let’s solve for Q(u):

1
0 0 1

1
1 1 2

1
2 2 3

2 1 1
0 0 1

2 1 1
1 1 2

2 2
0 1

1 1 1 1
0 1 1 2

0 1 1 2

3 2
0 1

(1- )

(1- )

(1- )

(1- )

(1- )

( ) (1- )

(1- )[(1- ) ] [(1- ) ]

(1- )[(1- ){(1- ) } {(1- ) }] ...

(1- ) 3 (1- )

V u V uV

V u V uV

V u V uV

V u V uV

V u V uV

Q u u V uV

u u V uV u u V uV

u u u V uV u u V uV

u V u u V

= +

= +

= +

= +

= +

= +

= + + +
= + + + +

= + 2 3
2 33 (1- )u u V u V+ +



9

Finding Q(u)   (cont’d)

In general,

where “n choose i” is:

This defines a class of curves called Bézier curves.

What’s the relationship between the number of 
control points and the degree of the polynomials?

0

( ) (1 )
n

i n i
i

i

n
Q u u u V

i
−

=

= −

!

( )! !

n n

i n i i
=

−

10

Bernstein polynomials

The coefficients of the control points are a set of 
functions called the Bernstein polynomials:

For degree 3, we have:

Useful properties on the interval [0,1]:

each is between 0 and 1
sum of all four is exactly 1 (a.k.a., a “partition of 
unity”)

These together imply that the curve lies within the 
convex hull of its control points.

3
0

2
1

2
2

3
3

( ) (1 )

( ) 3 (1 )

( ) 3 (1 )

( )

b u u

b u u u

b u u u

b u u

= −

= −

= −

=

0

( ) ( )
n

i i
i

Q u b u V
=

=

b1

b0 b3

b2

1

1

11

Matrix form of Bezier curves

We can write out the equation of a Bezier curve in 
matrix form: 

=

=

0

3 2 1

2

3

3 2

-1 3 -3 1

3 -6 3 0
( ) 1

-3 3 0 0

1 0 0 0

1

T

T

T

T

T

V

V
Q u u u u

V

V

u u u BezierM V

12

Displaying Bézier curves

How could we draw one of these things?

It would be nice if we had an adaptive algorithm, that 
would take into account flatness.

DisplayBezier( V0, V1, V2, V3 ) 

begin

if ( FlatEnough( V0, V1, V2, V3 ) )

Line( V0, V3 );

else

something;

end;

V0

V1 V2

V3



13

Subdivide and conquer

DisplayBezier( V0, V1, V2, V3 ) 

begin

if ( FlatEnough( V0, V1, V2, V3 ) )

Line( V0, V3 );

else

Subdivide(V[]) L[], R[]

DisplayBezier( L0, L1, L2, L3 );

DisplayBezier( R0, R1, R2, R3 );

end;

V1 V2

V3

V0

Q(1/2)

L0

L3L2

L1

R0

R3

R2

R1

14

Testing for flatness

Compare total length of control polygon to length of 
line connecting endpoints:

0 1 1 2 2 3

0 3

1
V V V V V V

V V
ε

− + − + −
< +

−

V0

V1 V2

V3

15

More complex curves

Suppose we want to draw a more complex curve.

Why not use a high-order Bézier?

Instead, we’ll splice together a curve from individual 
segments that are cubic Béziers.

Why cubic?

There are three properties we’d like to have in our 
newly constructed splines…

16

Local control

One problem with Béziers is that every control point 
affects every point on the curve (except the 
endpoints).

Moving a single control point affects the whole 
curve!

We’d like our spline to have local control, that is, 
have each control point affect some well-defined 
neighborhood around that point.



17

Interpolation

Bézier curves are approximating.  The curve does 
not (necessarily) pass through all the control points.  
Each point pulls the curve toward it, but other points 
are pulling as well.

We’d like to have a spline that is interpolating, that 
is, that always passes through every control point.

18

Continuity

We want our curve to have continuity.  There 
shouldn’t be an abrupt change when we move from 
one segment to the next.

There are nested degrees of continuity:

C-1: C0:

C1, C2 : C3, C4, …:

C2

C
1  only

19

Ensuring continuity

Let’s look at continuity first.

Since the functions defining a Bézier curve are 
polynomial, all their derivatives exist and are 
continuous on the interior of the curve.

Therefore, we only need to worry about the 
derivatives at the endpoints of the curve.

20

Ensuring C0 continuity

Suppose we have a cubic Bézier defined by 
(V0,V1,V2,V3), and we want to attach another curve 
(W0,W1,W2,W3) to it, so that there is C0 continuity at 
the joint.

What constraint(s) does this place on (W0,W1,W2,W3)?

=0 : (1) (0)V WC Q Q

V0

V1

V2

V3



21

The C0 Bezier spline

How then could we construct a curve passing 
through a set of points P1…Pn?

We call this curve a spline.  The endpoints of the 
Bezier segments are called joints.

In the animator project, you will construct such a 
curve by specifying all the Bezier control points 
directly.

P0

P1

P2

P3

P4

22

Next, we will construct curves with C1 continuity.  To 
do this, we need the derivatives at the endpoints. 
Recall that:

Then:

1st derivatives at the endpoints

′ =

′ =

(0)

(1)

Q

Q

V0

V1 V2

V3

=

0

3 2 1

2

3

-1 3 -3 1

3 -6 3 0
( ) 1

-3 3 0 0

1 0 0 0

T

T

T

T

T

V

V
Q u u u u

V

V

23

Ensuring C1 continuity

Suppose we have a cubic Bézier defined by 
(V0,V1,V2,V3), and we want to attach another curve 
(W0,W1,W2,W3) to it, so that there is C1 continuity at 
the joint.

What constraint(s) does this place on (W0,W1,W2,W3)?

V0

V1

V2

V3

=
=

0

1 ' '

: (1) (0)

: (1) (0)

V W

V W

C Q Q

C Q Q

24

The C1 Bezier spline

How then could we construct a curve passing 
through a set of points P1…Pn?

We can specify the Bezier control points directly, or 
we can devise a scheme for placing them 
automatically…

P0

P1

P2

P3

P4



25

Catmull-Rom splines

If we set each derivative to be one half of the vector 
between the previous and next controls, we get a 
Catmull-Rom spline.

This leads to:

=
= +

=
=

0 1

1 1 2 0

2 2 3 1

3 2

1
6
1
6

( - )

- ( - )

V P

V P P P

V P P P

V P

P0

P1

P2

P3

P4

26

We can give more control by exposing the derivative 
scale factor as a parameter:

The parameter τ controls the tension.  Catmull-Rom 
uses τ = 1/2.  Here’s an example with τ =3/2.

Tension control

τ

τ

=
= +

=
=

0 1

1 1 2 0

2 2 3 1

3 2

3

3

( - )

- ( - )

V P

V P P P

V P P P

V P

P0

(P1 - P0)

P1

P2

P3

P4

1
2
_

(P2 - P0)1
2
_

(P3 - P1)1
2
_

(P4 - P2)1
2
_

(P4 - P3)1
2
_

27

2nd derivatives at the endpoints

Finally, we’ll want to develop C2 splines.  To do this, 
we’ll need second derivatives of Bezier curves.

Taking the second derivative of Q(u) yields:

′′ = +
= +

′′ = +
= +

0 1 2

1 0 1 2

1 2 3

2 3 2 1

(0) 6( - 2 )

-6[( - ) ( - )]

(1) 6( - 2 )

-6[( - ) ( - )]

Q V V V

V V V V

Q V V V

V V V V

V0

V1 V2

V3

28

Ensuring C2 continuity

Suppose we have a cubic Bézier defined by 
(V0,V1,V2,V3), and we want to attach another curve 
(W0,W1,W2,W3) to it, so that there is C2 continuity at 
the joint.

What constraint(s) does this place on (W0,W1,W2,W3)?

0

1 ' '

2 '' ''

: (1) (0)

: (1) (0)

: (1) (0)

V W

V W

V W

C Q Q

C Q Q

C Q Q

=

=

=

V0

V1

V2

V3



29

Building a complex spline

Instead of specifying the Bézier control points 
themselves, let’s specify the corners of the A-frames 
in order to build a C2 continuous spline.

These are called B-splines.  The starting set of points 
are called de Boor points.

B0

B1 B2

B3 B4

B5

30

B-splines

Here is the completed B-spline.

What are the Bézier control points, in terms of the de 
Boor points?

0 0 1

1 2

0 1 2

1 1 2

2 1 2

3 1 2 3

____[____ ____ ]

____[____ ____ ]

____ ____ ____

____ ____

____ ____

____ ____ ____

V B B

B B

B B B

V B B

V B B

V B B B

= +
+ +
= + +
= +
= +
= + +

B0

B1 B2

B3 B4

B5
V0

V1

V3

V2

31

B-splines

We can write the B-spline to Bezier transformation as:

What is the matrix form for the curve Q(u)?

0 0

1 1

2 2

3 3

1 4 1 0

0 4 2 01

0 2 4 06

0 1 4 1

T T

T T

T T

T T

V B

V B

V B

V B

=

B-splineV = M B

32

Endpoints of B-splines

We can see that B-splines don’t interpolate the de 
Boor points.

It would be nice if we could at least control the 
endpoints of the splines explicitly.

There’s a trick to make the spline begin and end at 
control points by repeating them.

In the example below, let’s force interpolation of the 
last endpoint:

0 1 2 3 4 5B B B B B B

B0

B1 B2

B3 B4

B5
V0

V1

V3

V2



33

What if we want a closed curve, i.e., a loop?

With Catmull-Rom and B-spline curves, this is easy:

Closing the loop

B0

B1 B2

B3

B4

P0

P1 P2

P3

P4

34

In the animator project, you will draw a curve on the 
screen:

You will actually treat this curve as:

Where θ is a variable you want to animate.  We can 
think of the result as a function:

You have to apply some constraints to make sure 
that θ(t) actually is a function.

Curves in the animator project

( )=( ) ( ), ( )u x u y uQ

θ =
=

( ) ( )

( ) ( )

u y u

t u x u

θ( )t

35

One of the requirements is to implement “wrapping” 
so that the animation restarts smoothly when 
looping back to the beginning.

This is a lot like making a closed curve: the 
calculations for the θ -coordinate are exactly the 
same.

The t-coordinate is a little trickier: you need to create 
“phantom” t-coordinates before and after the first 
and last coordinates.

“Wrapping”


