Reading

14. Subdivision curves

Recommended:

- Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications, 1996, section 6.1-6.3, A.5.

Subdivision curves

Idea:

- repeatedly refine the control polygon

$$
P_{0} \rightarrow P_{1} \rightarrow P_{2} \rightarrow \cdots
$$

- curve is the limit of an infinite process

$$
C=\lim _{i \rightarrow \infty} P_{i}
$$

Chaikin's algorithm (1974)

Chakin introduced the following "corner-cutting" scheme in 1974:

- Start with a piecewise linear curve
- Insert new vertices at the midpoints (the splitting step)
- Average each vertex with the "next" neighbor (the averaging step)
- Go to the splitting step

Averaging masks

The limit curve is a quadratic B -spline!
Instead of averaging with the nearest neighbor, we can generalize by applying an averaging mask during the averaging step:

$$
r=\left(\ldots, r_{-1}, r_{0}, r_{1}, \ldots\right)
$$

In the case of Chaikin's algorithm:

$$
r=
$$

Lane-Riesenfeld algorithm (1980)

Use averaging masks from Pascal's triangle:

$$
r=\frac{1}{2^{n}}\left(\binom{n}{0},\binom{n}{1}, \cdots,\binom{n}{n}\right)
$$

Gives B-splines of degree $n+1$.
$\mathrm{n}=0$:
$n=1$:
$\mathrm{n}=2$:

Subdivide ad nauseum?

After each split-average step, we are closer to the limit curve.

How many steps until we reach the final (limit) position?

Can we push a vertex to its limit position without infinite subdivision? Yes!

Local subdivision matrix

Consider the cubic B-spline subdivision mask:

$$
\frac{1}{4}\left(\begin{array}{lll}
1 & 2 & 1
\end{array}\right)
$$

Now consider what happens during splitting and averaging:

We can write equations that relate points at one subdivision level to points at the previous:

$$
\begin{aligned}
& Q_{L}^{1}=\frac{1}{2}\left(Q_{L}^{0}+Q^{0}\right)=\frac{1}{8}\left(4 Q_{L}^{0}+4 Q^{0}\right) \\
& Q^{1}=\frac{1}{8}\left(Q_{L}^{0}+6 Q^{0}+Q_{R}^{0}\right) \\
& Q_{R}^{1}=\frac{1}{2}\left(Q^{0}+Q_{R}^{0}\right)=\frac{1}{8}\left(4 Q^{0}+4 Q_{R}^{0}\right)
\end{aligned}
$$

Local subdivision matrix

We can write this as a recurrence relation in matrix form:

$$
\begin{aligned}
\left(\begin{array}{l}
Q_{L}^{j} \\
Q^{j} \\
Q_{R}^{j}
\end{array}\right) & =\frac{1}{8}\left(\begin{array}{lll}
4 & 4 & 0 \\
1 & 6 & 1 \\
0 & 4 & 4
\end{array}\right)\left(\begin{array}{l}
Q_{L}^{j-1} \\
Q^{j-1} \\
Q_{R}^{j-1}
\end{array}\right) \\
Q^{j} & =S Q^{j-1}
\end{aligned}
$$

Where the Q 's are row vectors and S is the local subdivision matrix.

We can think about the behavior of each coordinate independently. For example, the xcoordinate:

$$
\begin{aligned}
\left(\begin{array}{c}
x_{L}^{j} \\
x^{j} \\
x_{R}^{j}
\end{array}\right) & =\frac{1}{8}\left(\begin{array}{lll}
4 & 4 & 0 \\
1 & 6 & 1 \\
0 & 4 & 4
\end{array}\right)\left(\begin{array}{c}
x_{L}^{j-1} \\
x^{j-1} \\
x_{R}^{j-1}
\end{array}\right) \\
X^{j} & =S X^{j-1}
\end{aligned}
$$

Local subdivision matrix, cont'd

Tracking just the x components through subdivision:

$$
X^{j}=S X^{j-1}=S \cdot S X^{j-2}=S \cdot S \cdot S X^{j-3}=\cdots=S^{j} X^{0}
$$

The limit position of the x 's is then:

$$
X^{\infty}=\lim _{j \rightarrow \infty} S^{j} X^{0}
$$

OK, so how do we apply a matrix an infinite number of times??

Eigenvectors and eigenvalues

To solve this problem, we need to look at the eigenvectors and eigenvalues of S. First, a review...

Let v be a vector such that:

$$
S v=\lambda v
$$

We say that v is an eigenvector with eigenvalue λ.
An $n \times n$ matrix can have n eigenvalues and eigenvectors:

$$
\begin{gathered}
S v_{1}=\lambda_{1} v_{1} \\
\vdots \\
S v_{n}=\lambda_{n} v_{n}
\end{gathered}
$$

For non-defective matrices, the eigenvectors form a basis, which means we can re-write X in terms of the eigenvectors:

$$
X=\sum^{n} a_{i} v_{i}
$$

To infinity, but not beyond...

Now let's apply the matrix to the vector X :

$$
S X=S \sum^{n} a_{i} v_{i}=\sum^{n} a_{i} S v_{i}=\sum^{n} a_{i} \lambda_{i} v_{i}
$$

Applying it j times:

$$
S^{j} X=S^{j} \sum^{n} a_{i} v_{i}=\sum^{n} a_{i} S^{j} v_{i}=\sum^{n} a_{i} \lambda_{i}^{j} v_{i}
$$

Let's assume the eigenvalues are sorted so that:

$$
\lambda_{1}>\lambda_{2}>\lambda_{3} \geq \cdots \geq \lambda_{n}
$$

Now let j go to infinity.
If $\lambda_{1}>1$, then it blows up.
If $\lambda_{1}<1$, then it vanishes to zero.
If $\lambda_{1}=1$, then:

$$
S^{\infty} X=\sum^{n} a_{i} \lambda_{i}^{\infty} v_{i}=a_{1} v_{1}
$$

Evaluation masks

What are the eigenvalues and eigenvectors of our cubic B -spline subdivision matrix?

$$
\begin{array}{lll}
\lambda_{1}=1 & \lambda_{2}=\frac{1}{2} & \lambda_{3}=\frac{1}{4} \\
v_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) & v_{2}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) & v_{3}=\left(\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right)
\end{array}
$$

We're OK!
But where did the x-coordinates end up?

Evaluation masks, cont'd

To finish up, we need to compute a_{1}.
It turns out that, if we call v_{i} the "right eigenvectors" then there are a corresponding set of "left eigenvectors" with the same eigenvalues such that:

$$
\begin{gathered}
u_{1}^{T} S=\lambda_{1} u_{1}^{T} \\
\vdots \\
u_{n}^{T} S=\lambda_{n} u_{n}^{T}
\end{gathered}
$$

Using the first left eigenvector, we can compute:

$$
x^{\infty}=a_{1}=u_{1}^{T} X^{0}
$$

In fact, this works at any subdivision level:

$$
x^{\infty}=S^{\infty} X^{j}=u_{1}^{T} X^{j}
$$

The same result obtains for the y-coordinate:

$$
y^{\infty}=S^{\infty} Y^{j}=u_{1}^{T} Y^{j}
$$

We call u_{i} an evaluation mask.

Recipe for subdivision curves

After subdividing and averaging a few times, we can push each vertex to its limit position by applying an evaluation mask.

Each subdivision scheme has its own evaluation mask, mathematically determined by analyzing the subdivision and averaging rules.

For Lane-Riesenfeld cubic B-spline subdivision, we get:

$$
\frac{1}{6}\left(\begin{array}{lll}
1 & 4 & 1
\end{array}\right)
$$

Now we can cook up a simple procedure for creating subdivision curves:

- Subdivide (split+average) the control polygon a few times. Use the averaging mask.
- Push the resulting points to the limit positions. Use the evaluation mask.

DLG interpolating scheme (1987)

Slight modification to algorithm:

- splitting step introduces midpoints
- averaging step only changes midpoints

For DLG (Dyn-Levin-Gregory), use:

$$
r=\frac{1}{16}(-2,5,10,5,-2)
$$

Since we are only changing the midpoints, the points after the averaging step do not move.

Summary

What to take home:

- The meanings of all the boldfaced terms.
- How to perform the splitting and averaging steps on subdivision curves.

