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Computer Graphics Prof. Brian Curless
CSE 557 Winter 2003
 
 
 
 
 
 
 
 
 
 
 
 

Homework #2 
 

Shading, parametric curves, subdivision curves, final project selection 
 
 
 
 
 

         Assigned: Friday, February 28, 2002 
 
                 Due: Thursday, March 6, 2002 
                           (at the beginning of class) 

   
 
 

 
 
 

Directions: Please provide short written answers to the following questions.  Feel free to talk over the problems 
in general terms with classmates, but please answer the questions on your own. 
 
 

 
 
 
 
 
 
 

Name:_______________________________________________________________ 
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1. Shading as signal processing 
 
In this problem, we will consider the effect of diffuse shading in a signal processing framework.  To make the analysis 
tractable, we will work in a 2D world (�flatland�), but the concepts generalize to 3D.  We will also assume a 
monochrome world, i.e., light intensities and reflection coefficients will be scalar values, not (r,g,b) triples.  We will 
analyze the problem in a local illumination framework, i.e., no interreflections or shadows. 
 
Consider a point P0 on a diffuse surface with normal n0 and diffuse coefficient kd, sometimes written ρ and called the  
�albedo.�  This surface is illuminated by a distant and arbitrarily complex environment.  The environment 
illumination is described by the function e(θ).  The figure below illustrates this illumination relative to the surface 
point, and then shows e(θ) represented in polar coordinates and as a periodic function over the real line. 

 
Note that θ  is measured from the surface normal n0 and runs clockwise in this problem (toward tangent t0).  The light 
reflected from this point is an integral of diffuse reflection over all incoming light directions: 
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We could compute this integral by sampling over the lighting directions, weighting by cosθ, summing the result, and 
dividing by the number of samples.  The goal of this problem is to find an approximate method that gives reasonably 
accurate results with far less computation. 
 
Before proceeding with the problem, we note a few theorems from Fourier analysis.  The Fourier transform of a 1D 
signal is: 
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Note that the variables θ  and φ have been substituted for x and s for this problem.  1D continuous convolution can be 
written as: 
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Some useful Fourier transform pairs: 
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1.  Shading as signal processing (cont�d) 

 
Scaling the argument of a delta function is equivalent to changing its area under integration.  As a result: 
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A corollary of this delta function behavior is: 
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a. First, we note that e(θ) is periodic.  Periodic functions can be represented as a Fourier series, i.e., a set of evenly 
spaced samples (delta functions of various �heights�) in the Fourier domain, where the location of each frequency 
sample is called a harmonic.  Consider one period of e(θ), varying from �π to π.  We can select for this central 
component, call it c(θ), using the box function: 
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From c(θ), we can construct e(θ) using the impulse train and the shifting theorem of delta functions: 
 

 
What is the Fourier transform, E(φ), of e(θ), in terms of C(φ)?   
 
b. Now consider a diffuse surface you want to shade with the environment e(θ).  So far, we have represented the 
environment with respect to a particular normal, n0.  Other surface normals will be rotated versions of this normal at 
an angle α with respect to n0.  From the point of view of these normals, the environment appears to be rotated by α.  
Write out the equation for l(α), the light reflected from an arbitraray surface normal, in terms of the rotated 
environment, e(θ - α), and modify the integrand so that the limits of integration are +∞ and �∞. 
 
c. What is the Fourier transform, L(φ), of l(θ), in terms of C(φ)?  Your answer should take the form of another Fourier 
series. 
 
d. The result of (c) shows that the Fourier series spectrum of e(θ) is attenuated at each harmonic.  What is the 
attenuation weight for the i-th harmonic?  Perform simplifications so that your answer contains no sines or cosines. 
 
e. When shading diffuse surfaces with environment illumination, how would you save space in representing the 
environment illumination approximately?   How would you save time in computing diffuse reflection from each point 
on the surface?  Justify your answers. 
 
f. Suppose we have a real world sphere (a circle in 2D for this problem)) with uniform albedo over the surface, and we 
take a sequence of images of the sphere (circle) so that we see how much light is reflected for every possible normal.  
R. W. Priesendorfer conjectured 25 years ago that one could take these observations and, in theory, reconstruct an 
arbitrary lighting environment completely.  Was he right?  Justify your answer. 
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2. Direct manipulation of B-spline curves 

 

One of the shortcomings of the parametric curves we've described in class is the fact that the only ``handles'' for 
modifying the curve are the control points.  For approximating curves, such as B-splines the handles don't even lie 
on the curves.  A nice feature would be to allow the user to pick a point on the curve, drag that point around, and 
have the curve follow (and interpolate) the point.   

 

[Note: in this problem, we are only directly computing adjustments to the B-spline control points.  The Bezier 
control points are derived from the B-spline control points and are free to move indirectly (i.e., you do not need to 
keep track of what happens to the Bezier control points that are not being moved directly as in part (a)).] 

 
a. As shown in class, a set of four cubic B-spline control points (a.k.a., de Boor points), B0... B3 generate a set of 

cubic Bezier control points,  V0...V3.  Let's �associate� V0 with B1 (the tip of it's A-frame).  Likewise, we can 
associate V3 with B2. Clearly, both V0 and V3 lie on the curve.  If we were to select and move V0 by ∆V0, how 
would we compute ∆B1 (the change in B1) if the remaining B-spline control points remain fixed?  [Aside: we 
could perform the same analysis if we were to move V3 and update B2 accordingly.] 

 
b. Before improving on (a), recall that, cubic Bezier curves can be written in the form:  
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where the bi(u) are the cubic Bezier-Bernstein polynomials. 

 
Similarly, B-spline curves can be written as: 
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where ni(u) are the B-spline basis functions.  Solve for the polynomial forms of the cubic B-spline basis 
functions. 

 
c. Now, let's say we pick an arbitrary point, Q(uo) on the curve, and then move it by ∆Q(uo). We could move 

either B1or B2 to accommodate, but a more natural choice is to move both of them in proportion to how close 
uo is to 0 or 1.  Let's impose the constraint that: 
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Compute ∆B1 and ∆B2 as a function of ∆Q(uo).  Your solution should contain B-spline basis functions, ni, but 
you do not need to expand them into their polynomial forms when writing your answer.  
What happens at uo equal to 0 or 1? 

 
d. Consider a curve built from many de Boor points.  Let�s say you have repositioned an arbitrary point on the 

curve using the method described in (c).  If you now reposition a point in one of the immediately neighboring 
Bezier segments, will the point you originally repositioned still, in general, be interpolated?  Justify your 
answer. 
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3. Subdivision curves 
 
The subdivision mask for quadratic B-spline curves is: 
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Perform the following steps in analyzing the fundamental characteristics of this subdivision curve: 
 
a. Using a construction similar to the one we used in class, develop the subdivision matrix, S, for this curve.   As 

part of your answer, sketch out a figure that illustrates the neighborhood you are analyzing. 
 
b. Compute the eigenvalues and eigenvetors of S.  Recall from linear algebra that eigenvalues are found to be 

roots of det(S � λ I) = 0, and the eigenvectors can be solved from the equation S v = λ v for each eigenvalue. 
 

c. Solve for the limit mask of this subdivision scheme. 
 

d. Solve for the tangent mask of this subdivision scheme. 
 
 

The subdivision mask for the Dyn-Levin-Gregory (DLG) interpolating subdivision scheme is: 
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e. What is the subdivision matrix for the DLG subdivision scheme?  Again, your answer should include a sketch 

of the neighborhood you are analyzing. 
 
 

 
4. Final project 
 
Send email to both Keith and myself describing who you plan to work with and what you plan to develop for your 
final project.  Explain your division of labor, and describe the artifact you hope to produce. This email is due by 
midnight of March 6 (same due date as this rest of this homework).  We will set up a meeting with each team to 
discuss their project shortly afterward.  You will demo the project itself on the morning of Thursday, March 20, 
with a concise web page write-up (with artifacts) due by 5pm on Friday, March 21. 
 

 


