
1

8. Distribution Ray Tracing

2

Reading

Required:

Watt, sections 10.6 ,14.8.

Further reading:

A. Glassner. An Introduction to Ray Tracing.
Academic Press, 1989. [In the lab.]

Robert L. Cook, Thomas Porter, Loren Carpenter.
“Distributed Ray Tracing.” Computer Graphics
(Proceedings of SIGGRAPH 84). 18 (3). pp. 137-145.
1984.

James T. Kajiya. “The Rendering Equation.”
Computer Graphics (Proceedings of SIGGRAPH 86).
20 (4). pp. 143-150. 1986.

3

Pixel anti-aliasing

I x xd
pixel

()

No anti-aliasing

Pixel anti-aliasing

4

Surface reflection equation

In reality, surfaces do not reflect in a mirror-like fashion.

To compute the reflection from a real surface, we would
actually need to solve the surface reflection equation:

How might we represent light from a single direction?

We can plot the reflected light as a function of viewing
angle for multiple light source contributions:

ω ω ω ω ω=() () (,)
H

out outin in inrI I f d

5

Simulating gloss and translucency

The mirror-like form of reflection, when used to
approximate glossy surfaces, introduces a kind of
aliasing, because we are undersampling reflection
(and refraction).

For example:

Distributing rays over reflection directions gives:

R

T

6

Reflection anti-aliasing

I fin in out inr d
H

() (,)w w w wò

Reflection anti-aliasing

7

Full anti-aliasing

I fin in out inr d
H

() (,)w w w wò

I x xd
pixel

()ò

Full anti-aliasing…lots of nested integrals!

Computing these integrals is prohibitively
expensive.

We’ll look at ways to approximate integrals…

8

Approximating integrals

Let’s say we want to compute the integral of a
function:

If f(x) is not known analytically, but can be evaluated,
then we can approximate the integral by:

Evaluating an integral in this manner is called
quadrature.

()F f x dx=

1
()F f i x

n
≈ ∆

9

Integrals as expected values

An alternative to distributing the sample positions
regularly is to distribute them stochastically.

Let’s say the position in x is a random variable X, which
is distributed according to p(x), a probability density
function (strictly positive that integrates to unity).

Now let’s consider a function of that random variable,
f(X)/p(X). What is the expected value of this new
random variable?

First, recall the expected value of a function g(X):

Then, the expected value of f(X)/p(X) is:

[()] () ()E g X g x p x dx=

10

Monte Carlo integration

Thus, given a set of samples positions, Xi, we can
estimate the integral as:

This procedure is known as Monte Carlo integration.

The trick is getting as accurate as possible with as few
samples as possible.

More concretely, we would like the variance of the
estimate of the integral to be low:

The name of the game is variance reduction…

1 ()

()
i

i

f X
F

n p X
≈

2 2
() () ()

() () ()

f X f X f X
V E E

p X p X p X
= −

11

Uniform sampling

One approach is uniform sampling (i.e., choosing X
from a uniform distribution):

12

Importance sampling

A better approach, if f(x) is positive, would be to
choose p(x) ~ f(x). In fact, this choice would be optimal.

Why don’t we just do that?

Alternatively, we can use heuristics to guess where f(x)
will be large. This approach is called importance
sampling.

13

Summing over ray paths

We can think of this problem in terms of
enumerated rays:

The intensity at a pixel is the sum over the primary
rays:

For a given primary ray, its intensity depends on
secondary rays:

Substituting back in:

r1

r2

r11
r12r13

r131

r132

1
()

n

pixel i
i

I I r
n

=

= →() () ()i ij r ij i
j

I r I r f r r

= →() ()pixel ij r ij i
i j

I I r f r r

14

Summing over ray paths

We can incorporate tertiary rays next:

Each triple i,j,k corresponds to a ray path:

So, we can see that ray tracing is a way to
approximate a complex, nested light transport
integral with a summation over ray paths (of
arbitrary length!).

Problem: too expensive to sum over all paths.

Solution: choose a small number of “good” paths.

r1

r2

r11
r12r13

r131

r132

= → →() () ()pixel ijk r ijk ij r ij i
i j k

I I r f r r f r r

→ →ijk ij ir r r

15

Whitted integration

An anti-aliased Whitted ray tracer chooses very specific
paths, i.e., paths starting on a regular sub-pixel grid
with only perfect reflections (and refractions) that
terminate at the light source.

One problem with this approach is that it doesn’t
account for non-mirror reflection at surfaces.

r1

r4

r41

r421

r422

r42

16

Monte Carlo path tracing

Instead, we could choose paths starting from random
sub-pixel locations with completely random decisions
about reflection (and refraction). This approach is
called Monte Carlo path tracing [Kajiya86].

The advantage of this approach is that the answer is
known to be unbiased and will converge to the right
answer.

17

Importance sampling

The disadvantage of the completely random
generation of rays is the fact that it samples
unimportant paths and neglects important ones.

This means that you need a lot of rays to converge to a
good answer.

The solution is to re-inject Whitted-like ideas: spawn
rays to the light, and spawn rays that favor the
specular direction.

r1

r4

r41

r421

r422

r42

18

Stratified sampling

Another method that gives faster convergence is
stratified sampling.

E.g., for sub-pixel samples:

We call this a jittered sampling pattern.

One interesting side effect of these stochastic
sampling patterns is that they actually injects noise
into the solution (slightly grainier images). This noise
tends to be less objectionable than aliasing artifacts.

19

Distribution ray tracing

These ideas can be combined to give a particular
method called distribution ray tracing [Cook84]:

uses non-uniform (jittered) samples.

replaces aliasing artifacts with noise.

provides additional effects by distributing rays
to sample:

• Reflections and refractions

• Light source area

• Camera lens area

• Time

[Originally called “distributed ray tracing,” but we will
call it distribution ray tracing so as not to confuse
with parallel computing.]

20

DRT pseudocode

TraceImage() looks basically the same, except now
each pixel records the average color of jittered sub-
pixel rays.

function traceImage (scene):

for each pixel (i, j) in image do

I(i, j) ← 0

for each sub-pixel id in (i,j) do

s ← pixelToWorld(jitter(i, j, id))

p ← COP

d ←(s - p).normalize()

I(i, j) ← I(i, j) + traceRay(scene, p, d, id)

end for

I(i, j) I(i, j)/numSubPixels

end for

end function

A typical choice is numSubPixels = 4*4.

21

DRT pseudocode (cont’d)

Now consider traceRay(), modified to handle (only)
opaque glossy surfaces:

function traceRay(scene, p, d, id):

(q, N, material) ← intersect (scene, p, d)

I ← shade(…)

R ← jitteredReflectDirection(N, -d, id)

I ← I + material.kr ∗ traceRay(scene, q, R, id)

return I

end function

22

Pre-sampling glossy reflections

23

Distributing rays over light source area gives:

Surface

Occluder

Light

Umbra

Penumbra

Soft shadows

24

The pinhole camera

The first camera - “camera obscura” - known to Aristotle.

In 3D, we can visualize the blur induced by the pinhole
(a.k.a., aperture):

Q: How would we reduce blur?

25

Shrinking the pinhole

Q: How can we simulate a pinhole camera more
accurately?

Q: What happens as we continue to shrink the
aperture?

Image plane

Aperture

26

Shrinking the pinhole, cont’d

Diffraction

27

Pinhole cameras in the real world require small apertures
to keep the image in focus.

Lenses focus a bundle of rays to one point => can have
larger aperture.

For a “thin” lens, we can approximately calculate where an
object point will be in focus using the the Gaussian lens
formula:

where f is the focal length of the lens.

Lenses

1 1 1+ =
o id d f

odid

f

28

Depth of field

Lenses do have some limitations.

The most noticeable is the fact that points that are not in
the object plane will appear out of focus.

The depth of field is a measure of how far from the object
plane points can be before appearing “too blurry.”

image object

29

Simulating depth of field

Distributing rays over a finite aperture gives:

Image plane Plane in focus

Aperture

Lens

30

In general, you can trace rays through a scene and
keep track of their id’s to handle all of these effects:

Chaining the ray id’s

31

DRT to simulate _________________

Distributing rays over time gives:

