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10. Hierarchical Modeling
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Reading

Angel, sections 8.1 - 8.6

OpenGL Programming Guide, chapter 3
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Symbols and instances

Most graphics APIs support a few geometric 
primitives:

spheres

cubes

cylinders

These symbols are instanced using an instance 
transformation.

Q: What is the matrix for the instance transformation 
above?

S R T

4

Connecting primitives
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3D Example:  A robot arm

Consider this robot arm with 3 degrees of freedom:

Base rotates about its vertical axis by θ
Upper arm rotates in its xy-plane by φ
Lower arm rotates in its xy-plane by ψ

Q:  What matrix do we use to transform the base?

Q:  What matrix for the upper arm?

Q:  What matrix for the lower arm?

h1

h2
h3

Base

Upper arm

Lower arm
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Robot arm implementation

The robot arm can be displayed by keeping a global matrix 
and computing it at each step:

Matrix M_model;

main()

{

. . .

robot_arm();

. . .

}

robot_arm()

{

M_model = R_y(theta);

base();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi);

upper_arm();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi)

*T(0,h2,0)*R_z(psi);

lower_arm();

}

Do the matrix computations seem wasteful?
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Instead of recalculating the global matrix each time, we 
can just update it in place by concatenating matrices on 
the right:

Matrix M_model;

main()

{

. . .

M_model = Identity();

robot_arm();

. . .

}

robot_arm()

{

M_model *= R_y(theta);

base();

M_model *= T(0,h1,0)*R_z(phi);

upper_arm();

M_model *= T(0,h2,0)*R_z(psi);

lower_arm();

}

Robot arm implementation, better
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OpenGL maintains a global state matrix called the 
model-view matrix, which is updated by 
concatenating matrices on the right.  

main()

{

. . .

glMatrixMode( GL_MODELVIEW );

glLoadIdentity();

robot_arm();

. . .

}

robot_arm()

{

glRotatef( theta, 0.0, 1.0, 0.0 );

base();

glTranslatef( 0.0, h1, 0.0 );

glRotatef( phi, 0.0, 0.0, 1.0 );

lower_arm();

glTranslatef( 0.0, h2, 0.0 );

glRotatef( psi, 0.0, 0.0, 1.0 );

upper_arm();

}

Robot arm implementation, OpenGL
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Hierarchical modeling

Hierarchical models can be composed of instances 
using trees or DAGs:

edges contain geometric transformations

nodes contain geometry (and possibly drawing 
attributes)
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How might we 
draw the tree for 
the robot arm?
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A complex example: human figure

Q:  What’s the most sensible way to traverse this 
tree?

torso

left upper
arm

head right upper
arm

left upper
leg

right upper
leg

left lower
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right lower
arm

left lower
leg

right lower
leg
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Human figure implementation, OpenGL

figure()

{

torso();

glPushMatrix();

glTranslate( ... );

glRotate( ... );

head();

glPopMatrix();

glPushMatrix();

glTranslate( ... );

glRotate( ... );

left_upper_arm();

glPushMatrix();

glTranslate( ... );

glRotate( ... );

left_lower_arm();

glPopMatrix();

glPopMatrix();

. . .

}
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Animation

The above examples are called articulated models:

rigid parts

connected by joints

They can be animated by specifying the joint angles 
(or other display parameters) as functions of time.
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Key-frame animation

The most common method for character animation 
in production is key-frame animation.

Each joint specified at various key frames (not 
necessarily the same as other joints)

System does interpolation or in-betweening

Doing this well requires:

A way of smoothly interpolating key frames:  
splines

A good interactive system

A lot of skill on the part of the animator
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Scene graphs

The idea of hierarchical modeling can be extended to 
an entire scene, encompassing:

many different objects

lights

camera position

This is called a scene tree or scene graph.

Scene

Camera

Light1
Light2

Object1

Object2 Object3


