
1

10. Hierarchical Modeling

2

Reading

Angel, sections 8.1 - 8.6

OpenGL Programming Guide, chapter 3

3

Symbols and instances

Most graphics APIs support a few geometric
primitives:

spheres

cubes

cylinders

These symbols are instanced using an instance
transformation.

Q: What is the matrix for the instance transformation
above?

S R T

4

Connecting primitives

5

3D Example: A robot arm

Consider this robot arm with 3 degrees of freedom:

Base rotates about its vertical axis by θ
Upper arm rotates in its xy-plane by φ
Lower arm rotates in its xy-plane by ψ

Q: What matrix do we use to transform the base?

Q: What matrix for the upper arm?

Q: What matrix for the lower arm?

h1

h2
h3

Base

Upper arm

Lower arm

6

Robot arm implementation

The robot arm can be displayed by keeping a global matrix
and computing it at each step:

Matrix M_model;

main()

{

. . .

robot_arm();

. . .

}

robot_arm()

{

M_model = R_y(theta);

base();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi);

upper_arm();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi)

*T(0,h2,0)*R_z(psi);

lower_arm();

}

Do the matrix computations seem wasteful?

7

Instead of recalculating the global matrix each time, we
can just update it in place by concatenating matrices on
the right:

Matrix M_model;

main()

{

. . .

M_model = Identity();

robot_arm();

. . .

}

robot_arm()

{

M_model *= R_y(theta);

base();

M_model *= T(0,h1,0)*R_z(phi);

upper_arm();

M_model *= T(0,h2,0)*R_z(psi);

lower_arm();

}

Robot arm implementation, better

8

OpenGL maintains a global state matrix called the
model-view matrix, which is updated by
concatenating matrices on the right.

main()

{

. . .

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

robot_arm();

. . .

}

robot_arm()

{

glRotatef(theta, 0.0, 1.0, 0.0);

base();

glTranslatef(0.0, h1, 0.0);

glRotatef(phi, 0.0, 0.0, 1.0);

lower_arm();

glTranslatef(0.0, h2, 0.0);

glRotatef(psi, 0.0, 0.0, 1.0);

upper_arm();

}

Robot arm implementation, OpenGL

9

Hierarchical modeling

Hierarchical models can be composed of instances
using trees or DAGs:

edges contain geometric transformations

nodes contain geometry (and possibly drawing
attributes)

chassis chassis

right front
wheel

left front
wheel

right rear
wheel

left rear
wheel

wheel

rig
ht

 fr
on

t

le
ft

fr
on

t

rig
ht

 r
ea

r

le
ft

re
ar

How might we
draw the tree for
the robot arm?

10

A complex example: human figure

Q: What’s the most sensible way to traverse this
tree?

torso

left upper
arm

head right upper
arm

left upper
leg

right upper
leg

left lower
arm

right lower
arm

left lower
leg

right lower
leg

11

Human figure implementation, OpenGL

figure()

{

torso();

glPushMatrix();

glTranslate(...);

glRotate(...);

head();

glPopMatrix();

glPushMatrix();

glTranslate(...);

glRotate(...);

left_upper_arm();

glPushMatrix();

glTranslate(...);

glRotate(...);

left_lower_arm();

glPopMatrix();

glPopMatrix();

. . .

}

12

Animation

The above examples are called articulated models:

rigid parts

connected by joints

They can be animated by specifying the joint angles
(or other display parameters) as functions of time.

13

Key-frame animation

The most common method for character animation
in production is key-frame animation.

Each joint specified at various key frames (not
necessarily the same as other joints)

System does interpolation or in-betweening

Doing this well requires:

A way of smoothly interpolating key frames:
splines

A good interactive system

A lot of skill on the part of the animator

14

Scene graphs

The idea of hierarchical modeling can be extended to
an entire scene, encompassing:

many different objects

lights

camera position

This is called a scene tree or scene graph.

Scene

Camera

Light1
Light2

Object1

Object2 Object3

