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2. Sampling theory
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Reading

Required:

Watt, Section 14.1

Recommended:

Ron Bracewell, The Fourier Transform and 
Its Applications, McGraw-Hill.
Don P. Mitchell and Arun N. Netravali,
“Reconstruction Filters in Computer
Computer Graphics ,” Computer Graphics,
(Proceedings of SIGGRAPH 88). 22 (4), pp. 
221-228, 1988.
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What is an image?

We can think of an image as a function, f, from R2

to R:

f( x, y ) gives the intensity of a channel at 
position ( x, y )
Realistically, we expect the image only to be 
defined over a rectangle, with a finite range:

• f: [a,b]x[c,d] [0,1]

A color image is just three functions pasted 
together.  We can write this as a “vector-valued” 
function:

We’ll focus in grayscale (scalar-valued) images  
for now.
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Images as functions
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Digital images

In computer graphics, we usually create or 
operate on digital (discrete) images:

Sample the space on a regular grid
Quantize each sample (round to nearest 
integer)

If our samples are ∆ apart, we can write this as:

f[i ,j] = Quantize{ f(i ∆, j ∆) }

i

j
f[i,j]
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Motivation: filtering and resizing

What if we now want to:

smooth an image?
sharpen an image?
enlarge an image?
shrink an image?

Before we try these operations, it’s helpful to think 
about images in a more mathematical way…
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Fourier transforms

We can represent functions as a weighted sum of 
sines and cosines.

We can think of a function in two complementary 
ways:

Spatially in the spatial domain
Spectrally in the frequency domain

The Fourier transform and its inverse convert 
between these two domains:

f(x) is usually a real signal, but F(s) is generally 
complex: 

If f(x) is symmetric, i.e., f(x) = f(-x)), then F(s) = 
A(s).
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1D Fourier examples
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2D Fourier transform
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2D Fourier examples
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Frequency
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Convolution

One of the most common methods for filtering a 
function is called convolution.

In 1D, convolution is defined as:

Note that convolution is a linear operator.  In 
particular, this means:
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Convolution in 2D

In two dimensions, convolution becomes:
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Convolution theorems

Convolution theorem: Convolution in the spatial
domain is equivalent to multiplication in the 
frequency domain.

Symmetric theorem: Convolution in the 
frequency domain is equivalent to multiplication in
the spatial domain.

f h F H∗ ←→ ⋅

f h F H⋅ ←→ ∗
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1D convolution theorem example
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2D convolution theorem example

*

f(x,y)

h(x,y)

g(x,y)

|F(sx,sy)|

|H(sx,sy)|

|G(sx,sy)|
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The delta function

The Dirac delta function, δ(x), is a handy tool for 
sampling theory.  

It has zero width, infinite height, and unit area. 

It is usually drawn as:

δ(x)
x
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Sifting and shifting

For sampling, the delta function has two important 
properties.

Sifting:

Shifting:
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The shah/comb function

A string of delta functions is the key to sampling.  
The resulting function is called the shah or comb
function:

which looks like:

Amazingly, the Fourier transform of the shah 
function takes the same form:

where so = 1/T.
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Sampling

Now, we can talk about sampling.

The Fourier spectrum gets replicated by spatial 
sampling!

How do we recover the signal?
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Sampling and reconstruction
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Sampling and reconstruction in 
2D
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Sampling theorem

This result is known as the Sampling Theorem
and is due to Claude Shannon who first 
discovered it in 1949:

A signal can be reconstructed from its samples 
without loss of information, if the original signal 
has no frequencies above ½ the sampling 
frequency.

For a given bandlimited function, the minimum 
rate at which it must be sampled is the Nyquist 
frequency.
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Reconstruction filters

The sinc filter, while “ideal”, has two drawbacks:

It has large support (slow to compute)
It introduces ringing in practice

We can choose from many other filters…
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Cubic filters

Mitchell and Netravali (1988) experimented with 
cubic filters, reducing them all to the following 
form:

The choice of B or C trades off between being too 
blurry or having too much ringing.  B=C=1/3 was 
their “visually best” choice.  

The resulting reconstruction filter is often called 
the “Mitchell filter.”
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Reconstruction filters in 2D

We can also perform reconstruction in 2D…
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Aliasing

What if we go below the Nyquist frequency?
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Anti-aliasing

Anti-aliasing is the process of removing the
frequencies before they alias.
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Anti-aliasing by analytic prefiltering

We can fill the “magic” box with analytic pre-
filtering of the signal:

Why may this not generally be possible?
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Filtered downsampling

Alternatively, we can sample the image at a 
higher rate, and then filter that signal:

We can now sample the signal at a lower rate.  
The whole process is called filtered 
downsampling or supersampling and 
averaging down.
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Practical upsampling

When resampling a function (e.g., when resizing 
an image), you do not need to reconstruct the 
complete continuous function.

For zooming in on a function, you need only use a 
reconstruction filter and evaluate as needed for 
each new sample.

Here’s an example using a cubic filter:

x
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Practical upsampling

This can also be viewed as:
1. putting the reconstruction filter at the desired 

location
2. evaluating at the original sample positions
3. taking products with the sample values 

themselves
4. summing it up

Important: filter should always be normalized!

x
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Practical downsampling

Downsampling is similar, but filter has larger 
support and smaller amplitude.

Operationally: 

1. Choose filter in downsampled space.
2. Compute the downsampling rate, d, ratio of 

new sampling rate to old sampling rate
3. Stretch the filter by 1/d and scale it down 

by d
4. Follow upsampling procedure (previous 

slides) to compute new values

x
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2D resampling

We’ve been looking at separable filters:

How might you use this fact for efficient 
resampling in 2D?
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