2. Sampling theory

Reading

Required:
+ Watt, Section 14.1

Recommended:

+ Ron Bracewell, The Fourier Transform and
Its Applications, McGraw-Hill.

+ Don P. Mitchell and Arun N. Netravali,
“Reconstruction Filters in Computer
Computer Graphics ,” Computer Graphics,
(Proceedings of SIGGRAPH 88). 22 (4), pp.
221-228, 1988.

What is an image?

We can think of an image as a function, f, from R?
toR:

* f(x, y)gives the intensity of a channel at
position (x, y)

+ Realistically, we expect the image only to be
defined over a rectangle, with a finite range:

* folabIx[e.d] = [0,1]

A color image is just three functions pasted
together. We can write this as a “vector-valued”
function:
r(x,y)
S y)=|g(x,y)
b(x,)

We'll focus in grayscale (scalar-valued) images
for now.

Images as functions




Digital images
In computer graphics, we usually create or
operate on digital (discrete) images:

+ Sample the space on a regular grid

¢ Quantize each sample (round to nearest
integer)

If our samples are A apart, we can write this as:

fli j1 = Quantize{ (i A, jA)}

Motivation: filtering and resizing

What if we now want to:

¢ smooth an image?
+ sharpen an image?
+ enlarge an image?
+ shrink an image?

Before we try these operations, it's helpful to think
about images in a more mathematical way...

Fourier transforms

We can represent functions as a weighted sum of
sines and cosines.

We can think of a function in two complementary
ways:

+ Spatially in the spatial domain

+ Spectrally in the frequency domain

The Fourier transform and its inverse convert
between these two domains:

1D Fourier examples

Spatial domain Frequency domain

cos(2max)

— Fo9)= D]'f(x)e”'z”s*dx—>

Spatial Frequency
domain domain

<« f(x)= D]‘F(s)e"z”s‘ds «

f(x) is usually a real signal, but F(s) is generally
complex:
Hs)=As)+iBs)
— |F(S)| e—i2m9(s)

If f(x) is symmetric, i.e., f(x) = f(-x)), then F(s) =
A(S).

A
Y

‘ I1(x)

gauss(x; ©) gauss(s; 1/0)

gauss(x; 1/0) gauss(s; o)




2D Fourier transform

Xy)e i27(8x: +syydxdy —>
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2D Fourier examples
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Convolution

One of the most common methods for filtering a
function is called convolution.

In 1D, convolution is defined as:
g(x)=f(x)* h(x)
= o]f(x')h(x— Xx")alx
= D]f(x')ﬁ(x'— X)dx'
where h(x)= h(-x).

Note that convolution is a linear operator. In
particular, this means:

a(x)* (b(x)+c(x))= a(x)* b(x)+a(x)* c(x)

Convolution in 2D

In two dimensions, convolution becomes:
a(x,y)=f(x,y)*h(x,y)

= D]. o]f(x',y')h(x— x',y—y')dx'dy'

—00 —oo

= T wjf(x', yHh(x'= x,y'= y)dx'dy'

—o0 —oo

where h(x, y)=h(—x,—y).




Convolution theorems 1D convolution theorem example

Convolution theorem: Convolution in the spatial

domain is equivalent to multiplication in the . ) .
frequency domain. Spatial domain Frequency domain

fihe—F-H i i

Symmetric theorem: Convolution in the
frequency domain is equivalent to multiplication in
the spatial domain.

f-he—F+H

2D convolution theorem example The delta function
The Dirac delta function, &x), is a handy tool for
sampling theory.

Xy

-

It is usually drawn as:

|G(s.5))l




Sifting and shifting
For sampling, the delta function has two important
properties.
Sifting:
f(x)o(x—a)=f(a)d(x—a)

‘ o(x-a)

f(a)d(x-a)
X

i
| a [ a

Shifting:

f(x)xd(x—a)=f(x—a)

’ d(x-a)

X

[ a

The shah/comb function

A string of delta functions is the key to sampling.
The resulting function is called the shah or comb
function:

oo

1I(x)= Y 8(x—nT)

N=—co
which looks like:
III(x)

Amazingly, the Fourier transform of the shah
function takes the same form:

II(s)= i o(s—ns,)

N=—co

where s, = 1T.

Sampling

Now, we can talk about sampling.
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The Fourier spectrum gets replicated by spatial
sampling!

How do we recover the signal?
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Reconstruction
x filter
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Sampling and reconstruction in

Sampling theorem

This result is known as the Sampling Theorem
and is due to Claude Shannon who first
discovered it in 1949:

A signal can be reconstructed from its samples
without loss of information, if the original signal
has no frequencies above 2 the sampling
frequency.

For a given bandlimited function, the minimum
rate at which it must be sampled is the Nyquist
frequency.

Reconstruction filters Cubic filters

The sinc filter, while “ideal”, has two drawbacks: Mitchell and Netravali (1988) experimented with
cubic filters, reducing them all to the following

+ It has large support (slow to compute) form:

+ It introduces ringing in practice
(12-9B-6C) x|’ +(~18+12B+6C) x| +(6-2B) x| <1

nx)= ((—B—GC)‘X‘S+(GB+3OC)‘X‘2+(—123—48C)‘X‘+(85+24C) 1<|x <2
0 otherwise

We can choose from many other filters...

The choice of B or C trades off between being too
blurry or having too much ringing. B=C=1/3 was
their “visually best” choice.

The resulting reconstruction filter is often called

‘ the “Mitchell filter.”




Reconstruction filters in 2D Aliasing

We can also perform reconstruction in 2D... What if we go below the Nyquist frequency?

sinc(x) sinc(y)
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x = ¥
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mitchell(x) mitchell(y)

Anti-aliasing Anti-aliasing by analytic prefiltering

Anti-aliasing is the process of removing the

We can fill the “magic” box with analytic pre-
frequencies before they alias.

filtering of the signal:

VAP
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Why may this not generally be possible?




Filtered downsampling

Alternatively, we can sample the image at a
higher rate, and then filter that signal:

We can now sample the signal at a lower rate.
The whole process is called filtered
downsampling or supersampling and
averaging down.

Practical upsampling

When resampling a function (e.g., when resizing
an image), you do not need to reconstruct the
complete continuous function.

For zooming in on a function, you need only use a
reconstruction filter and evaluate as needed for
each new sample.

Here’'s an example using a cubic filter:

Practical upsampling

This can also be viewed as:

. putting the reconstruction filter at the desired
location

. evaluating at the original sample positions

. taking products with the sample values
themselves

summing it up

Important: filter should always be normalized!

Practical downsampling

Downsampling is similar, but filter has larger
support and smaller amplitude.

Operationally:

1. Choose filter in downsampled space.

2. Compute the downsampling rate, d, ratio of
new sampling rate to old sampling rate

. Stretch the filter by 1/d and scale it down
by d

. Follow upsampling procedure (previous
slides) to compute new values

\




2D resampling

We've been looking at separable filters:

Lo(X, Y)= Lo (X)hp(Y)

How might you use this fact for efficient
resampling in 2D?




