
1

2. Sampling theory

2

Reading

Required:

Watt, Section 14.1

Recommended:

Ron Bracewell, The Fourier Transform and
Its Applications, McGraw-Hill.
Don P. Mitchell and Arun N. Netravali,
“Reconstruction Filters in Computer
Computer Graphics ,” Computer Graphics,
(Proceedings of SIGGRAPH 88). 22 (4), pp.
221-228, 1988.

3

What is an image?

We can think of an image as a function, f, from R2

to R:

f(x, y) gives the intensity of a channel at
position (x, y)
Realistically, we expect the image only to be
defined over a rectangle, with a finite range:

• f: [a,b]x[c,d] [0,1]

A color image is just three functions pasted
together. We can write this as a “vector-valued”
function:

We’ll focus in grayscale (scalar-valued) images
for now.

(,)
(,) (,)

(,)

r x y
f x y g x y

b x y
=

4

Images as functions

x

y
f(x,y)

5

Digital images

In computer graphics, we usually create or
operate on digital (discrete) images:

Sample the space on a regular grid
Quantize each sample (round to nearest
integer)

If our samples are ∆ apart, we can write this as:

f[i ,j] = Quantize{ f(i ∆, j ∆) }

i

j
f[i,j]

6

Motivation: filtering and resizing

What if we now want to:

smooth an image?
sharpen an image?
enlarge an image?
shrink an image?

Before we try these operations, it’s helpful to think
about images in a more mathematical way…

7

Fourier transforms

We can represent functions as a weighted sum of
sines and cosines.

We can think of a function in two complementary
ways:

Spatially in the spatial domain
Spectrally in the frequency domain

The Fourier transform and its inverse convert
between these two domains:

f(x) is usually a real signal, but F(s) is generally
complex:

If f(x) is symmetric, i.e., f(x) = f(-x)), then F(s) =
A(s).

2() () i sxF s f x e dxπ
∞

−

−∞

=

2() () i sxf x F s e dsπ
∞

−∞

=

Frequency
domain

Spatial
domain

2 ()

() () ()
() i s

F s A s iB s
F s e πθ−

= +
=

8

1D Fourier examples

x

x

x

x

x s

s

s

s

s

Spatial domain Frequency domain

II(x) sinc(s)

gauss(x; σ)

cos(2πax)

cos(2πbx)

a-a

b-b

gauss(s; 1/σ)

gauss(x; 1/σ) gauss(s; σ)

9

2D Fourier transform

2 ()(,) (,) x yi s x s y
x yF s s f x y e dxdyπ

∞ ∞
− +

−∞ −∞

=

2 ()(,) (,) x yi s x s y
x y x yf x y F s s e ds dsπ

∞ ∞
+

−∞ −∞

=

Frequency
domain

Spatial
domain

Spatial domain Frequency domain

(,)x yF s s(,)f x y

10

2D Fourier examples

Spatial
domain

Frequency
domain

(,)x yF s s(,)f x y

11

Convolution

One of the most common methods for filtering a
function is called convolution.

In 1D, convolution is defined as:

Note that convolution is a linear operator. In
particular, this means:

() () ()

(') (') '

(') (') '

g x f x h x

f x h x x dx

f x h x x dx

∞

−∞
∞

−∞

= ∗

= −

= −

where () ().h x h x= −

() (() ()) () () () ()a x b x c x a x b x a x c x∗ + = ∗ + ∗

12

Convolution in 2D

In two dimensions, convolution becomes:

(,) (,) (,)

(', ') (', ') ' '

(', ') (' , ') ' '

g x y f x y h x y

f x y h x x y y dx dy

f x y h x x y y dx dy

∞ ∞

−∞ −∞
∞ ∞

−∞ −∞

= ∗

= − −

= − −

where (,) (,).h x y h x y= − −

* =

f(x,y) h(x,y) g(x,y)

13

Convolution theorems

Convolution theorem: Convolution in the spatial
domain is equivalent to multiplication in the
frequency domain.

Symmetric theorem: Convolution in the
frequency domain is equivalent to multiplication in
the spatial domain.

f h F H∗ ←→ ⋅

f h F H⋅ ←→ ∗

14

1D convolution theorem example

f(x)

x

F(s)

s

h(x)

x

H(s)

s

g(x)

x

G(s)

s

*

Spatial domain Frequency domain

= =

15

2D convolution theorem example

*

f(x,y)

h(x,y)

g(x,y)

|F(sx,sy)|

|H(sx,sy)|

|G(sx,sy)|

16

The delta function

The Dirac delta function, δ(x), is a handy tool for
sampling theory.

It has zero width, infinite height, and unit area.

It is usually drawn as:

δ(x)
x

17

Sifting and shifting

For sampling, the delta function has two important
properties.

Sifting:

Shifting:

() () () ()f x x a f a x aδ δ− = −

() () ()f x x a f x aδ∗ − = −

δ(x-a)
x

a

f(x)

x

f(x-a)

x
a

* =

δ(x-a)
x

a

f(x)

x
f(a)δ(x-a)

x
a

=
a

18

The shah/comb function

A string of delta functions is the key to sampling.
The resulting function is called the shah or comb
function:

which looks like:

Amazingly, the Fourier transform of the shah
function takes the same form:

where so = 1/T.

III() ()
n

x x nTδ
∞

=−∞

= −

III() ()o
n

s s nsδ
∞

=−∞

= −

III(x)

x
T

III(s)

s
so

19

Sampling

Now, we can talk about sampling.

The Fourier spectrum gets replicated by spatial
sampling!

How do we recover the signal?

III(x)

x
T

x

x

III(s)

s
so

s

s

= =

20

Sampling and reconstruction

x s

s

sx

x

x

x

s

s

*

=
=

=
=

Reconstruction
filter

21

Sampling and reconstruction in
2D

x

y

x

y

x

y

x

y

x

y

sy

sx

sy

sx

sy

sx

sy

sx

sy

sx

*

=
=

=
=

*

22

Sampling theorem

This result is known as the Sampling Theorem
and is due to Claude Shannon who first
discovered it in 1949:

A signal can be reconstructed from its samples
without loss of information, if the original signal
has no frequencies above ½ the sampling
frequency.

For a given bandlimited function, the minimum
rate at which it must be sampled is the Nyquist
frequency.

23

Reconstruction filters

The sinc filter, while “ideal”, has two drawbacks:

It has large support (slow to compute)
It introduces ringing in practice

We can choose from many other filters…

x

x

x

x

x

x

x

x

II(x)

sinc(x)

gauss(x)

Λ(x)
*

=

=

=

x

=

24

Cubic filters

Mitchell and Netravali (1988) experimented with
cubic filters, reducing them all to the following
form:

The choice of B or C trades off between being too
blurry or having too much ringing. B=C=1/3 was
their “visually best” choice.

The resulting reconstruction filter is often called
the “Mitchell filter.”

3 2

3 2

(12 9 6) (18 12 6) (6 2) 1

() ((6) (6 30) (12 48) (8 24) 1 2
0

B C x B C x B x

r x B C x B C x B C x B C x
otherwise

− − + − + + + − <

= − − + + + − − + + ≤ <

2 1.5 1 0.5 0 0.5 1 1.5 2

0

0.5

1

25

x

x

x

x

x

y

y

y

y

II(x) II(y)

sinc(x) sinc(y)

mitchell(x) mitchell(y)

Λ(x) Λ(y)
*

=

=

=

Reconstruction filters in 2D

We can also perform reconstruction in 2D…

26

Aliasing

What if we go below the Nyquist frequency?

s

s

s

s

x

x

x

x

x

s

*

=

*

= =
=

Aliasing

27

Anti-aliasing

Anti-aliasing is the process of removing the
frequencies before they alias.

s

s

s

x

x

x

x

s

sx

=

*

=
==

Magic

28

Anti-aliasing by analytic prefiltering

We can fill the “magic” box with analytic pre-
filtering of the signal:

Why may this not generally be possible?

sx

sx

sx

*

= =

29

Filtered downsampling

Alternatively, we can sample the image at a
higher rate, and then filter that signal:

We can now sample the signal at a lower rate.
The whole process is called filtered
downsampling or supersampling and
averaging down.

sx

s

sx

*

= =

x

30

Practical upsampling

When resampling a function (e.g., when resizing
an image), you do not need to reconstruct the
complete continuous function.

For zooming in on a function, you need only use a
reconstruction filter and evaluate as needed for
each new sample.

Here’s an example using a cubic filter:

x

31

Practical upsampling

This can also be viewed as:
1. putting the reconstruction filter at the desired

location
2. evaluating at the original sample positions
3. taking products with the sample values

themselves
4. summing it up

Important: filter should always be normalized!

x

32

Practical downsampling

Downsampling is similar, but filter has larger
support and smaller amplitude.

Operationally:

1. Choose filter in downsampled space.
2. Compute the downsampling rate, d, ratio of

new sampling rate to old sampling rate
3. Stretch the filter by 1/d and scale it down

by d
4. Follow upsampling procedure (previous

slides) to compute new values

x

33

2D resampling

We’ve been looking at separable filters:

How might you use this fact for efficient
resampling in 2D?

=2 1 1(,) () ()D D Dr x y r x r y

