Reading

Recommended:

 Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications, 1996, section 6.1-6.3, A.5.

14. Subdivision curves

Subdivision curves

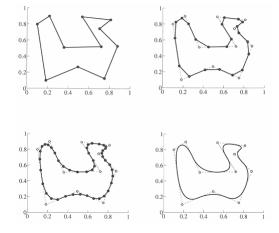
Idea:

• repeatedly refine the control polygon

 $P^1 \rightarrow P^2 \rightarrow P^3 \rightarrow \cdots$

• curve is the limit of an infinite process

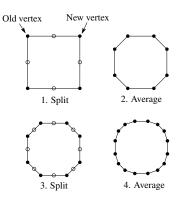
$$Q = \lim_{i \to \infty} P^i$$



Chaikin's algorithm

Chakin introduced the following "corner-cutting" scheme in 1974:

- Start with a piecewise linear curve
- Insert new vertices at the midpoints (the splitting step)
- Average each vertex with the "next" neighbor (the averaging step)
- Go to the splitting step



1

Averaging masks

The limit curve is a quadratic B-spline!

Instead of averaging with the nearest neighbor, we can generalize by applying an **averaging mask** during the averaging step:

 $r = (..., r_{-1}, r_0, r_1, ...)$

In the case of Chaikin's algorithm:

r =

Lane-Riesenfeld algorithm (1980)

Use averaging masks from Pascal's triangle:

$$r = \frac{1}{2^n} \left(\binom{n}{0}, \binom{n}{1}, \cdots, \binom{n}{n} \right)$$

Gives B-splines of degree n+1.

n=0:

n=1:

n=2:

Subdivide ad nauseum?

After each split-average step, we are closer to the **limit curve**.

How many steps until we reach the final (limit) position?

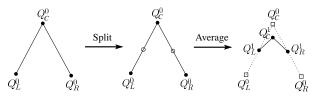
Can we push a vertex to its limit position without infinite subdivision? Yes!

Local subdivision matrix

Consider the cubic B-spline subdivision mask:

 $\frac{1}{4}(1 \ 2 \ 1)$

Now consider what happens during splitting and averaging:



We can write equations that relate points at one subdivision level to points at the previous:

$$Q_{L}^{1} = \frac{1}{2} \left(Q_{L}^{0} + Q_{C}^{0} \right) = \frac{1}{8} \left(4Q_{L}^{0} + 4Q_{C}^{0} \right)$$
$$Q^{1} = \frac{1}{8} \left(Q_{L}^{0} + 6Q_{C}^{0} + Q_{R}^{0} \right)$$
$$Q_{R}^{1} = \frac{1}{2} \left(Q_{C}^{0} + Q_{R}^{0} \right) = \frac{1}{8} \left(4Q_{C}^{0} + 4Q_{R}^{0} \right)$$

5

Local subdivision matrix

We can write this as a recurrence relation in matrix form:

$$\begin{pmatrix} Q_L^j \\ Q_C^j \\ Q_R^j \end{pmatrix} = \frac{1}{8} \begin{pmatrix} 4 & 4 & 0 \\ 1 & 6 & 1 \\ 0 & 4 & 4 \end{pmatrix} \begin{pmatrix} Q_L^{j-1} \\ Q_C^{j-1} \\ Q_R^{j-1} \\ Q_R^{j-1} \end{pmatrix}$$

$$Q^j = SQ^{j-1}$$

Where the Q's are row vectors and S is the **local** subdivision matrix.

We can think about the behavior of each coordinate independently. For example, the x-coordinate:

$$\begin{pmatrix} x_{L}^{j} \\ x_{C}^{j} \\ x_{R}^{j} \end{pmatrix} = \frac{1}{8} \begin{pmatrix} 4 & 4 & 0 \\ 1 & 6 & 1 \\ 0 & 4 & 4 \end{pmatrix} \begin{pmatrix} x_{L}^{j-1} \\ x_{C}^{j-1} \\ x_{R}^{j-1} \end{pmatrix}$$

$$X^{j} = SX^{j-1}$$

Local subdivision matrix, cont'd

Tracking just the *x* components through subdivision:

$$X^{j} = SX^{j-1} = S \cdot SX^{j-2} = S \cdot S \cdot SX^{j-3} = \dots = S^{j}X^{0}$$

The limit position of the x's is then:

$$X^{\infty} = \lim_{j \to \infty} \mathsf{S}^{j} X^{0}$$

OK, so how do we apply a matrix an infinite number of times??

10

Eigenvectors and eigenvalues

To solve this problem, we need to look at the eigenvectors and eigenvalues of *S*. First, a review...

Let v be a vector such that:

$$Sv = \lambda v$$

We say that v is an eigenvector with eigenvalue λ .

An *nxn* matrix can have *n* eigenvalues and eigenvectors:

$$Sv_1 = \lambda_1 v_1$$

$$\vdots$$

$$Sv_n = \lambda_n v_n$$

For *non-defective* matrices, the eigenvectors form a basis, which means we can re-write *X* in terms of the eigenvectors:

$$X = \sum_{i}^{n} a_{i} v_{i}$$

To infinity, but not beyond...

Now let's apply the matrix to the vector X:

$$X^{1} = SX^{0} = S\sum_{i}^{n} a_{i}v_{i} = \sum_{i}^{n} a_{i}Sv_{i} = \sum_{i}^{n} a_{i}\lambda_{i}v_{i}$$

Applying it *j* times:

$$X^{j} = S^{j}X = S^{j}\sum_{i}^{n}a_{i}v_{i} = \sum_{i}^{n}a_{i}S^{j}v_{i} = \sum_{i}^{n}a_{i}\lambda_{i}^{j}v_{i}$$

Let's assume the eigenvalues are sorted so that:

$$\lambda_1 > \lambda_2 > \lambda_3 \ge \cdots \ge \lambda_n$$

Now let *j* go to infinity:

$$X^{\infty} = \lim_{j \to \infty} S^{j} X^{0} = \lim_{j \to \infty} \sum_{i}^{n} a_{i} \lambda_{i}^{j} v_{i}$$

If $\lambda_1 > 1$, then:

If $\lambda_1 < 1$, then:

If $\lambda_1 = 1$, then:

Evaluation masks

What are the eigenvalues and eigenvectors of our cubic B-spline subdivision matrix?

$$\lambda_1 = 1 \qquad \lambda_2 = \frac{1}{2} \qquad \lambda_3 = \frac{1}{4}$$
$$\nu_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad \nu_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \qquad \nu_3 = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$$

We're OK!

But where did the x-coordinates end up?

What about the y-coordinates?

Evaluation masks, cont'd

To finish up, we need to compute a_j . First, we can reorganize the expansion of *X* into the eigenbasis:

$$X^{0} = a_{1}v_{1} + a_{2}v_{2} + \dots + a_{n}v_{n} = \begin{bmatrix} \vdots & \vdots & & \vdots \\ v_{1} & v_{2} & \dots & v_{n} \\ \vdots & \vdots & & \vdots \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix} = \mathbf{V}A$$

- -

We can then solve for the coefficients in this new basis:

$A = \mathbf{V}^{-1} X^{0}$						
	$\begin{bmatrix} a_1 \end{bmatrix}$		[u_1^T		
	a ₂ :	=		u_1^T u_2^T \vdots		X°
	a,			u_n^T	···	

Now we can compute the limit position of the x-coordinate:

$$x^{\infty} = a_1 = u_1^T X^{\circ}$$

We call u_1 the **evaluation mask**.

13

Evaluation masks, cont'd

It's easy to show that the *u*-vectors obey:

$$u_i^T S = \lambda_i u_i^T$$

These are the "left eigenvectors" of S.

Note that we need not start with the 0th level control points and push them to the limit. If we subdivide and average the control polygon *j* times, we can push the vertices of the refined polygon to the limit as well:

$$x^{\infty} = S^{\infty} X^j = u_1^T X^j$$

The same result obtains for the y-coordinate:

$$y^{\infty} = S^{\infty}Y^j = u_1^TY^j$$

Recipe for subdivision curves

The evaluation mask for the cubic B-spline is:

$$\frac{1}{6}(1 \quad 4 \quad 1)$$

Now we can cook up a simple procedure for creating subdivision curves:

- Subdivide (split+average) the control polygon a few times. Use the averaging mask.
- Push the resulting points to the limit positions. Use the evaluation mask.

Tangent analysis

What is the tangent to the cubic B-spline curve?

First, let's consider how we represent the x and y coordinate neighborhoods:

$$X^{0} = a_{1}v_{1} + a_{2}v_{2} + a_{3}v_{3}$$
$$Y^{0} = b_{1}v_{1} + b_{2}v_{2} + b_{3}v_{3}$$

We can view the point neighborhoods then as:

$$\begin{bmatrix} Q_{L}^{0} \\ Q_{C}^{0} \\ Q_{R}^{0} \end{bmatrix} = \begin{bmatrix} a_{1} \\ b_{1} \end{bmatrix} v_{1} + \begin{bmatrix} a_{2} \\ b_{2} \end{bmatrix} v_{2} + \begin{bmatrix} a_{3} \\ b_{3} \end{bmatrix} v_{3}$$

or:

$$\begin{bmatrix} Q_L^0 \\ Q_C^0 \\ Q_C^0 \\ Q_R^0 \end{bmatrix} = \begin{bmatrix} a_1 \\ b_1 \end{bmatrix} \begin{bmatrix} v_{1,L} \\ v_{1,C} \\ v_{1,R} \end{bmatrix} + \begin{bmatrix} a_2 \\ b_2 \end{bmatrix} \begin{bmatrix} v_{2,L} \\ v_{2,C} \\ v_{2,R} \end{bmatrix} + \begin{bmatrix} a_3 \\ b_3 \end{bmatrix} \begin{bmatrix} v_{3,L} \\ v_{3,C} \\ v_{3,R} \end{bmatrix}$$

The tangent to the curve is along the direction:

$$\mathbf{t} = \lim_{i \to \infty} \left(Q_R^j - Q_C^j \right)$$

17

The tangent mask

And now computing the tangent:

- -

$$\begin{split} \lim_{j \to \infty} \frac{Q_{R}^{j} - Q_{C}^{j}}{\|Q_{R}^{j} - Q_{C}^{j}\|} &= \lim_{j \to \infty} \frac{\left\lfloor \frac{a_{2}}{b_{2}} \right\rfloor \lambda_{2}^{j} (\mathbf{v}_{2,R} - \mathbf{v}_{2,C}) + \left\lfloor \frac{a_{3}}{b_{3}} \right\rfloor \lambda_{3}^{j} (\mathbf{v}_{3,R} - \mathbf{v}_{3,C})}{\left\| \frac{a_{2}}{b_{2}} \right\rfloor \lambda_{2}^{j} (\mathbf{v}_{2,R} - \mathbf{v}_{2,C}) + \left\lfloor \frac{a_{3}}{b_{3}} \right\rfloor \lambda_{3}^{j} (\mathbf{v}_{3,R} - \mathbf{v}_{3,C})}{\left\| \frac{a_{2}}{b_{2}} \right\rfloor (\mathbf{v}_{2,R} - \mathbf{v}_{2,C}) + \left\lfloor \frac{a_{3}}{b_{3}} \right\rfloor \left(\frac{\lambda_{3}}{\lambda_{2}} \right)^{j} (\mathbf{v}_{3,R} - \mathbf{v}_{3,C})}{\left\| \frac{a_{2}}{b_{2}} \right\rfloor (\mathbf{v}_{2,R} - \mathbf{v}_{2,C}) + \left\lfloor \frac{a_{3}}{b_{3}} \right\rfloor \left(\frac{\lambda_{3}}{\lambda_{2}} \right)^{j} (\mathbf{v}_{3,R} - \mathbf{v}_{3,C})}{\left\| \frac{a_{2}}{b_{2}} \right\rfloor (\mathbf{v}_{2,R} - \mathbf{v}_{2,C}) + \left\lfloor \frac{a_{3}}{b_{3}} \right\rfloor \left(\frac{\lambda_{3}}{\lambda_{2}} \right)^{j} (\mathbf{v}_{3,R} - \mathbf{v}_{3,C})}{\left\| \frac{a_{2}}{b_{2}} \right\rfloor (\mathbf{v}_{2,R} - \mathbf{v}_{2,C})} \\ &= \frac{\left\lfloor \frac{a_{2}}{b_{2}} \right\rfloor (\mathbf{v}_{2,R} - \mathbf{v}_{2,C})}{\left\| \frac{a_{2}}{b_{2}} \right\| (\mathbf{v}_{2,R} - \mathbf{v}_{2,C})} \\ &= \frac{\left\lfloor \frac{a_{2}}{b_{2}} \right\rfloor }{\left\| \frac{a_{2}}{b_{2}} \right\|} \\ &= \frac{\left\lfloor \frac{a_{2}}{b_{2}} \right\rfloor }{\left\| \frac{a_{2}}{b_{2}} \right\|} \\ &= \frac{\left\lfloor \frac{a_{2}}{b_{2}} \right\rfloor }{\left\| \frac{a_{2}}{b_{2}} \right\|} \end{split}$$

Thus, we can compute the tangent using the *second* left eigenvector! This analysis holds for general subdivision curves gives us the **tangent mask**.

Tangent analysis (cont'd)

But, this vector is vanishing as the "right" point approaches b_{3Y_3} the center point. However, the *normalized* tangent direction should be defined:

$$\mathbf{t} = \lim_{j \to \infty} \frac{Q_R^j - Q_C^j}{\left\| Q_R^j - Q_C^j \right\|}$$

Now, let's look at the "right" point in isolation:

$$Q_{R}^{0} = \begin{bmatrix} a_{1} \\ b_{1} \end{bmatrix} v_{1,R} + \begin{bmatrix} a_{2} \\ b_{2} \end{bmatrix} v_{2,R} + \begin{bmatrix} a_{3} \\ b_{3} \end{bmatrix} v_{3,R}$$

After *j* applications of the subdivision matrix:

$$Q_{R}^{j} = \begin{bmatrix} a_{1} \\ b_{1} \end{bmatrix} \lambda_{1}^{j} \mathbf{v}_{1,R} + \begin{bmatrix} a_{2} \\ b_{2} \end{bmatrix} \lambda_{2}^{j} \mathbf{v}_{2,R} + \begin{bmatrix} a_{3} \\ b_{3} \end{bmatrix} \lambda_{3}^{j} \mathbf{v}_{3,R}$$

Subtracting out the center point:

$$Q_{R}^{j} - Q_{C}^{j} = \begin{bmatrix} a_{1} \\ b_{1} \end{bmatrix} \lambda_{1}^{j} (\mathbf{v}_{1,R} - \mathbf{v}_{1,C}) + \begin{bmatrix} a_{2} \\ b_{2} \end{bmatrix} \lambda_{2}^{j} (\mathbf{v}_{2,R} - \mathbf{v}_{2,C}) + \begin{bmatrix} a_{3} \\ b_{3} \end{bmatrix} \lambda_{3}^{j} (\mathbf{v}_{3,R} - \mathbf{v}_{3,C})$$
$$= \begin{bmatrix} a_{2} \\ b_{2} \end{bmatrix} \lambda_{2}^{j} (\mathbf{v}_{2,R} - \mathbf{v}_{2,C}) + \begin{bmatrix} a_{3} \\ b_{3} \end{bmatrix} \lambda_{3}^{j} (\mathbf{v}_{3,R} - \mathbf{v}_{3,C})$$
18

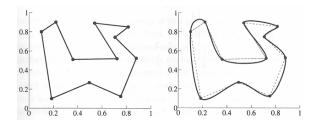
DLG interpolating scheme (1987)

Slight modification to subdivision algorithm:

- splitting step introduces midpoints
- averaging step only changes midpoints

For DLG (Dyn-Levin-Gregory), use:

$$r = \frac{1}{16}(-2,6,10,6,-2)$$



Since we are only changing the midpoints, the points after the averaging step do not move.