Reading

Recommended:

 Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications, 1996, section 10.2.

16. Subdivision surfaces

Building complex models

We can extend the idea of subdivision from curves to surfaces...

Subdivision surfaces

Chaikin's use of subdivision for curves inspired similar techniques for subdivision surfaces.

Iteratively refine a **control polyhedron** (or **control mesh**) to produce the limit surface

$$\sigma = \lim_{j \to \infty} M^j$$

using splitting and averaging steps.

2

1

Triangular subdivision

There are a variety of ways to subdivide a poylgon mesh.

A common choice for triangle meshes is 4:1 subdivision – each triangular face is split into four subfaces:

Original

After splitting

Loop averaging step

Once again we can use **masks** for the averaging step:

 $\mathbf{Q} \leftarrow \frac{\alpha(n)\mathbf{Q} + \mathbf{Q}_1 + \dots + \mathbf{Q}_n}{\alpha(n)\mathbf{Q} + \mathbf{Q}_1 + \dots + \mathbf{Q}_n}$

$$\alpha(n) + n$$

where

$$\alpha(n) = \frac{n(1-\beta(n))}{\beta(n)} \quad \beta(n) = \frac{5}{4} - \frac{(3+2\cos(2\pi/n))^2}{32}$$

These values, due to Charles Loop, are carefully chosen to ensure smoothness – namely, tangent plane or normal continuity.

Note: tangent plane continuity is also know as G¹ continuity.

5

Loop evaluation and tangent masks

As with subdivision curves, we can split and average a number of times and then push the points to their limit positions.

Evaluation mask

Tangent masks

$$\mathbf{Q}^{\infty} = \frac{\varepsilon(n)\mathbf{Q} + \mathbf{Q}_1 + \dots + \mathbf{Q}_n}{\varepsilon(n) + n}$$
$$\mathbf{T}_1^{\infty} = \tau_1(n)\mathbf{Q}_1 + \tau_2(n)\mathbf{Q}_2 + \dots + \tau_n(n)\mathbf{Q}_n$$
$$\mathbf{T}_2^{\infty} = \tau_n(n)\mathbf{Q}_1 + \tau_n(n)\mathbf{Q}_2 + \dots + \tau_{n-1}(n)\mathbf{Q}_n$$

where

$$\varepsilon(n) = \frac{3n}{\beta(n)}$$
 $\tau_i(n) = \cos(2\pi i/n)$

How do we compute the normal?

Recipe for subdivision surfaces

As with subdivision curves, we can now describe a recipe for creating and rendering subdivision surfaces:

- Subdivide (split+average) the control polyhedron a few times. Use the averaging mask.
- Compute two tangent vectors using the tangent masks.
- Compute the normal from the tangent vectors.
- Push the resulting points to the limit positions. Use the evaluation mask.
- Render!

6

Adding creases without trim curves

In some cases, we want a particular feature such as a crease to be preserved. With NURBS surfaces, this required the use of trim curves.

For subdivision surfaces, we can just modify the subdivision mask:

This gives rise to G⁰ continuous surfaces (i.e., having positional but not tangent plane continuity)

Creases without trim curves, cont.

Here's an example using Catmull-Clark surfaces (based on subdividing quadrilateral meshes):

Face schemes

4:1 subdivision of triangles is sometimes called a **face scheme** for subdivision, as each face begets more faces.

An alternative face scheme starts with arbitrary polygon meshes and inserts vertices along edges and at face centroids:

Catmull-Clark subdivision:

Note: after the first subdivision, all polygons are quadilaterals in this scheme.

Vertex schemes

In a **vertex scheme**, each vertex begets more vertices. In particular, a vertex surrounded by *n* faces is split into *n* subvertices, one for each face:

boundary. After splitting in this subdivision scheme, all

non-boundary vertices are of valence 4.

11

Interpolating subdivision surfaces

Interpolating schemes are defined by

- splitting
- averaging only new vertices

The following averaging mask is used in **butterfly** subdivision:

Setting t=0 gives the original polyhedron, and increasing small values of t makes the surface smoother, until t=1/8 when the surface is provably G¹.

