
4. Affine transformations

Reading

Required:

Watt, Section 1.1.

Further reading:

Foley, et al, Chapter 5.1-5.5.

David F. Rogers and J. Alan Adams, 
Mathematical Elements for Computer Graphics,
2nd Ed., McGraw-Hill, New York, 1990, Chapter 2. 

Geometric transformations

Geometric transformations will map points in one 
space to points in another: (x',y',z') = f(x,y,z).

These tranformations can be very simple, such as 
scaling each coordinate, or complex, such as non-
linear twists and bends.

We'll focus on transformations that can be 
represented easily with matrix operations.

We'll start in 2D...

Representation

We can represent a point, p = (x,y), in the plane

as a column vector 

as a row vector
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Representation, cont.

We can represent a 2-D transformation M by a 
matrix

If p is a column vector, M goes on the left:

If p is a row vector, MT goes on the right:

We will use column vectors.
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Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix 
M:

So:

We will develop some intimacy with the elements 
a, b, c, d…
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Identity

Suppose we choose a=d=1, b=c=0:

Gives the identity matrix:

Doesn't move the points at all
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Scaling

Suppose we set b=c=0, but let a and d take on any 
positive value:

Gives a scaling matrix:

Provides differential (non-uniform) scaling in
x and y:
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______________

Suppose we keep b=c=0, but let either a or d go
negative.

Examples:
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Now let's leave a=d=1 and experiment b. . . .

The matrix

gives:
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Let's see how a general 2 x 2 transformationMaffects the unit square:
the unit square:

0 1 1 0 0

0 0 1 1 0
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Effect on unit square, cont.

Observe:

Origin invariant under M

M can be determined just by knowing how the 
corners (1,0) and (0,1) are mapped

a and d give x- and y-scaling

b and c give x- and y-shearing



Rotation

From our observations of the effect on the unit 
square, it should be easy to write down a matrix for 
“rotation about the origin”:

Thus,
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Linear transformations

The unit square observations also tell us the 2x2 
matrix transformation implies that we are 
representing a point in a new coordinate system:

where u=[a c]T and v=[b d]T are vectors that define a 
new basis for a linear space.

The transformation to this new basis (a.k.a., change 
of basis) is a linear transformation.
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Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

Scaling

Rotation

Reflection

Shearing

Q: What important operation does that leave out?

Affine transformations

In order to incorporate the idea that both the basis 
and the origin can change, we augment the linear 
space u, v with an origin t.

We call u, v, and t (basis and origin) a frame for an
affine space.

Then, we can represent a change of frame as:

This change of frame is also known as an affine
transformation.

How do we write an affine transformation with 
matrices?

x yp' u v t



Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a 
third component to every point:

And then transform with a 3 x 3 matrix:

. . . gives translation!
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Rotation about arbitrary points

1. Translate q to origin

2. Rotate

3. Translate back

Note: Transformation order is important!!

Until now, we have only considered rotation about 
the origin.

With homogeneous coordinates, you can specify a 
rotation, , about any point q = [qx qy]T with a 
matrix:
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Points and vectors

From now on, we can represent points as have an 
additional coordinate of w=1.

Vectors have an additional coordinate of w=0.  Thus, 
a change of origin has no effect on vectors.

Q: What happens if we multiply a matrix by a vector?

These representations reflect some of the rules of 
affine operations on points and vectors:

One useful combination of affine operations is:

Q: What does this describe?

vector + vector

 scalar  vector

  point - point

 point + vector

 point + point
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Barycentric coordinates

A set of points can be used to create an affine frame.
Consider a triangle ABC and a point P:

We can form a frame with an origin C and the vectors 
from C to the other vertices:

We can then write P in this coordinate frame:

The coordinates ( , , ) are called the barycentric
coordinates of P relative to A, B, and C.

              A C B C Cu v t

P u v t



Computing barycentric coordinates

In the triangle example:

we can compute the barycentric coordinates of P:

Simple matrix analysis gives the solution:

Computing the determinant of the denominator 
gives:
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Cross products

Consider the cross-product of two vectors, u and v.
What is the geometric interpretation of this cross-
product?

A cross-product can be computed as:

What happens when u and v lie in the x-y plane?
What is the area of the triangle they span?
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Barycentric coords from area ratios

Now, let’s rearrange the equation from two slides 
ago:

The determinant is then just the z-component of
(B-A) x (C-A), which is two times the area of triangle 
ABC!

Thus, we find:

Where SArea(RST) is the signed area of a triangle, 
which can be computed with cross-products.
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Affine and convex combinations

Note that we seem to have added points together, 
which we said was illegal, but as long as they have 
coefficients that sum to one, it’s ok.

We call this an affine combination.  More generally:

is a proper affine combination if:

Note that if the i ‘s are all positive, the result is more 
specifically called a convex combination.

Q: Why is it called a convex combination? 
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Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D 
ones.

For example, scaling:
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Translation in 3D
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Rotation in 3D

Rotation now has more possibilities in 3D:
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Use right hand rule

Shearing in 3D

Shearing is also more complicated.  Here is one 
example:

We call this a shear with respect to the x-z plane.
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Preservation of affine combinations

A transformation F is an affine transformation if it 
preserves affine combinations:

where the Ai are points, and:

Clearly, the matrix form of F has this property.

One special example is a matrix that drops a 
dimension.   For example:

This transformation, known as an orthographic 
projection  is an affine transformation.

We’ll use this fact later…
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Properties of affine transformations

Here are some useful properties of affine 
transformations:

Lines map to lines

Parallel lines remain parallel

Midpoints map to midpoints (in fact, ratios are 
always preserved)
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Summary

What to take away from this lecture:

All the names in boldface.

How points and transformations are 
represented.

What all the elements of a 2 x 2 transformation 
matrix do and how these generalize to 3 x 3 
transformations.

What homogeneous coordinates are and how 
they work for affine transformations.

How to concatenate transformations.

The rules for combining points and vectors

The mathematical properties of affine 
transformations.


