# 2. Fourier analysis and sampling theory

# Reading

#### Required:

Watt, Section 14.1

#### Recommended:

- Ron Bracewell, The Fourier Transform and Its Applications, McGraw-Hill.
- Don P. Mitchell and Arun N. Netravali, "Reconstruction Filters in Computer Computer Graphics," Computer Graphics, (Proceedings of SIGGRAPH 88). 22 (4), pp. 221-228, 1988.

2

# What is an image?

We can think of an **image** as a function, f, from  $\mathbb{R}^2$  to  $\mathbb{R}$ :

- f(x, y) gives the intensity of a channel at position (x, y)
- Realistically, we expect the image only to be defined over a rectangle, with a finite range:
  - $f: [a,b] \times [c,d] \to [0,1]$

A color image is just three functions pasted together. We can write this as a "vector-valued" function:

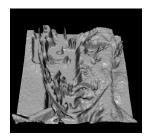
$$f(x,y) = \begin{bmatrix} r(x,y) \\ g(x,y) \\ b(x,y) \end{bmatrix}$$

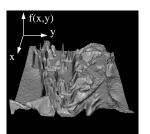
We'll focus in grayscale (scalar-valued) images for now.

# **Images as functions**









#### **Digital images**

In computer graphics, we usually create or operate on **digital** (**discrete**) images:

- Sample the space on a regular grid
- **Quantize** each sample (round to nearest integer)

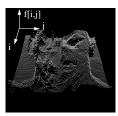
If our samples are  $\Delta$  apart, we can write this as:

 $f[i,j] = Quantize\{f(i \Delta, j \Delta)\}$ 









5

#### Motivation: filtering and resizing

What if we now want to:

- smooth an image?
- sharpen an image?
- enlarge an image?
- shrink an image?

Before we try these operations, it's helpful to think about images in a more mathematical way...

6

#### **Fourier transforms**

We can represent functions as a weighted sum of sines and cosines.

We can think of a function in two complementary ways:

- Spatially in the spatial domain
- Spectrally in the frequency domain

The **Fourier transform** and its inverse convert between these two domains:

$$F(s) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi sx} dx \longrightarrow$$

$$F(s) = \int_{-\infty}^{\infty} F(s)e^{i2\pi sx} ds \longleftarrow$$

Frequency domain

#### Fourier transforms (cont'd)

Spatial domain  $F(s) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi sx} dx \longrightarrow Frequency domain$   $f(x) = \int_{-\infty}^{\infty} F(s)e^{i2\pi sx} ds \longleftarrow$ 

Where do the sines and cosines come in?

f(x) is usually a real signal, but F(s) is generally complex:

$$F(s) = A(s) + iB(s)$$
$$= |F(s)|e^{-i2\pi\theta(s)}$$

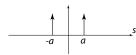
If f(x) is symmetric, i.e., f(x) = f(-x), then F(s) = A(s). Why?

7

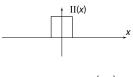
# **1D Fourier examples**

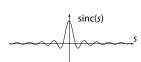
# Spatial domain $cos(2\pi bx)$

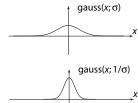
#### Frequency domain

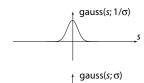












9

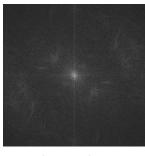
#### **2D Fourier transform**

Spatial domain 
$$F(s_x, s_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-i2\pi(s_x x + s_y y)} dx dy \longrightarrow Frequency domain$$

$$f(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(s_x, s_y) e^{i2\pi(s_x x + s_y y)} ds_x ds_y \longleftarrow Irrequency domain$$

Spatial domain

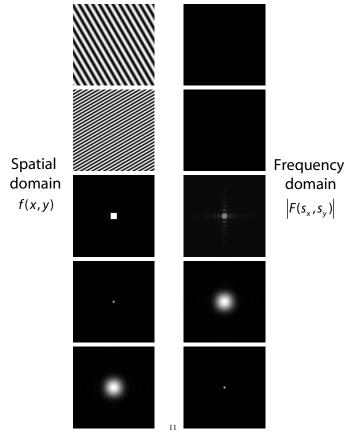




 $|F(s_x, s_y)|$ 

10

# **2D Fourier examples**



#### **Convolution**

One of the most common methods for filtering a function is called convolution.

In 1D, convolution is defined as:

$$g(x) = f(x) * h(x)$$

$$= \int_{-\infty}^{\infty} f(x')h(x - x')dx'$$

$$= \int_{\infty}^{\infty} f(x')\tilde{h}(x' - x)dx'$$

where  $\tilde{h}(x) \equiv h(-x)$ .

# **Convolution properties**

Convolution exhibits a number of basic, but important properties.

Commutativity:

$$a(x)*b(x)=b(x)*a(x)$$

Associativity:

$$[a(x)*b(x)]*c(x) = a(x)*[b(x)*c(x)]$$

Linearity:

$$a(x)*[k \cdot b(x)] = k \cdot [a(x)*b(x)]$$

$$a(x)*(b(x)+c(x)) = a(x)*b(x)+a(x)*c(x)$$

13

#### **Convolution in 2D**

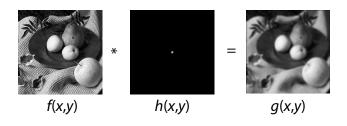
In two dimensions, convolution becomes:

$$g(x,y) = f(x,y) * h(x,y)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x',y')h(x-x',y-y')dx'dy'$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x',y')\tilde{h}(x'-x,y'-y)dx'dy'$$

where  $\tilde{h}(x,y) = h(-x,-y)$ .



14

#### **Convolution theorems**

**Convolution theorem**: Convolution in the spatial domain is equivalent to multiplication in the frequency domain.

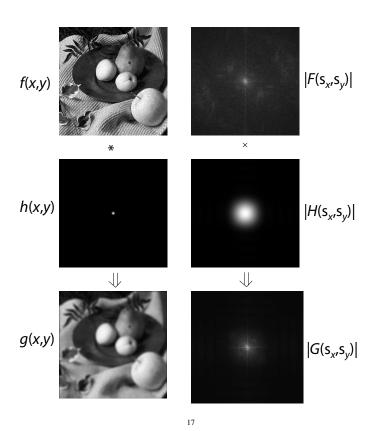
$$f * h \longleftrightarrow F \cdot H$$

**Symmetric theorem**: Convolution in the frequency domain is equivalent to multiplication in the spatial domain.

$$f \cdot h \longleftrightarrow F * H$$

# 1D convolution theorem example

#### 2D convolution theorem example

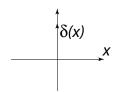


#### The delta function

The **Dirac delta function**,  $\delta(x)$ , is a handy tool for sampling theory.

It has zero width, infinite height, and unit area.

It is usually drawn as:



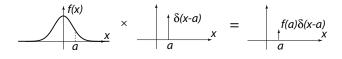
18

# Sifting and shifting

For sampling, the delta function has two important properties.

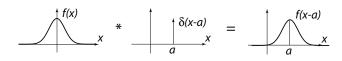
Sifting:

$$f(x)\delta(x-a) = f(a)\delta(x-a)$$



Shifting:

$$f(x) * \delta(x-a) = f(x-a)$$

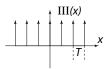


#### The shah/comb function

A string of delta functions is the key to sampling. The resulting function is called the **shah** or **comb** function:

$$III(x) = \sum_{n=-\infty}^{\infty} \delta(x - nT)$$

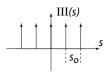
which looks like:



Amazingly, the Fourier transform of the shah function takes the same form:

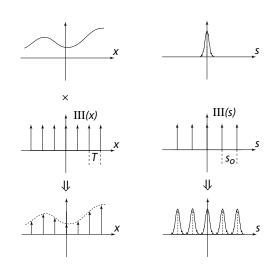
$$III(s) = \sum_{n=-\infty}^{\infty} \delta(s - ns_o)$$

where  $s_0 = 1/T$ .



# Sampling

Now, we can talk about sampling.

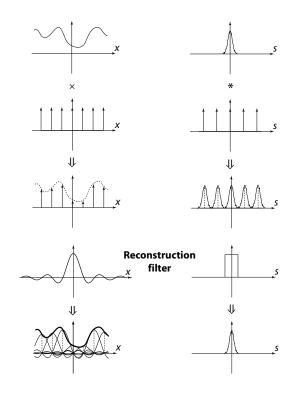


The Fourier spectrum gets *replicated* by spatial sampling!

How do we recover the signal?

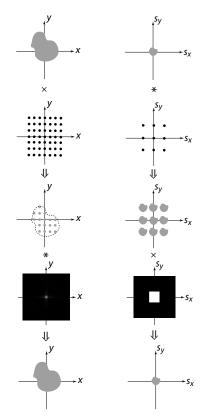
21

# Sampling and reconstruction



22

# Sampling and reconstruction in 2D



# **Sampling theorem**

This result is known as the **Sampling Theorem** and is due to Claude Shannon who first discovered it in 1949:

A signal can be reconstructed from its samples without loss of information, if the original signal has no frequencies above  $\frac{1}{2}$  the sampling frequency.

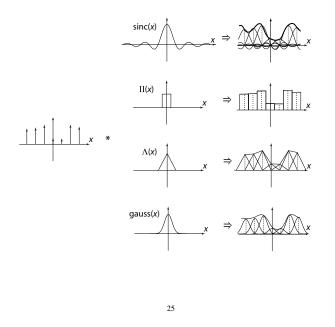
For a given **bandlimited** function, the minimum rate at which it must be sampled is the **Nyquist frequency**.

#### **Reconstruction filters**

The sinc filter, while "ideal", has two drawbacks:

- ◆ It has large support (slow to compute)
- It introduces ringing in practice

We can choose from many other filters...



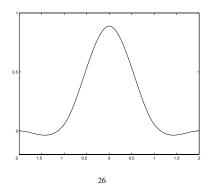
#### **Cubic filters**

Mitchell and Netravali (1988) experimented with cubic filters, reducing them all to the following form:

$$r(x) = \frac{1}{6} \begin{cases} (12 - 9B - 6C) |x|^3 + (-18 + 12B + 6C) |x|^2 + (6 - 2B) & |x| < 1 \\ ((-B - 6C) |x|^3 + (6B + 30C) |x|^2 + (-12B - 48C) |x| + (8B + 24C) & 1 \le |x| < 2 \\ 0 & otherwise \end{cases}$$

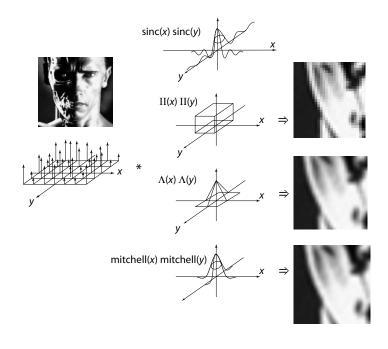
The choice of B or C trades off between being too blurry or having too much ringing. B=C=1/3 was their "visually best" choice.

The resulting reconstruction filter is often called the "Mitchell filter."



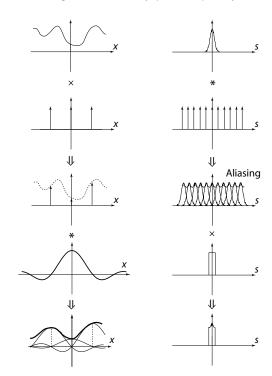
# **Reconstruction filters in 2D**

We can also perform reconstruction in 2D...



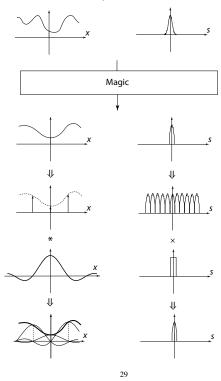
# **Aliasing**

What if we go below the Nyquist frequency?



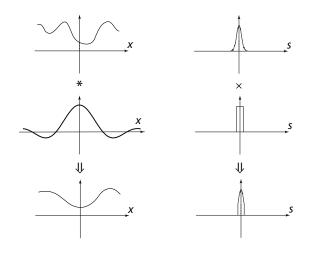
#### **Anti-aliasing**

**Anti-aliasing** is the process of *removing* the frequencies before they alias.



# Anti-aliasing by analytic prefiltering

We can fill the "magic" box with analytic pre-filtering of the signal:

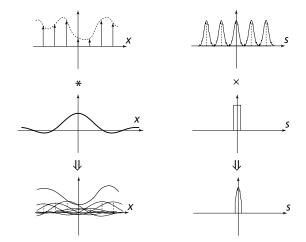


Why may this not generally be possible?

30

# Filtered downsampling

Alternatively, we can sample the image at a higher rate, and then filter that signal:



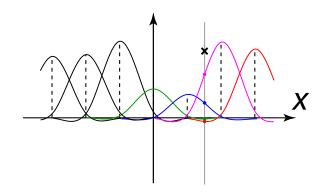
We can now sample the signal at a lower rate. The whole process is called filtered **downsampling** or **supersampling and averaging down**.

# **Practical upsampling**

When resampling a function (e.g., when resizing an image), you do not need to reconstruct the complete continuous function.

For zooming in on a function, you need only use a reconstruction filter and evaluate as needed for each new sample.

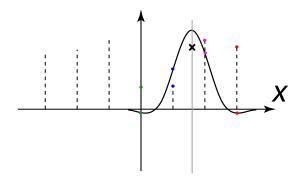
Here's an example using a cubic filter:



# **Practical upsampling**

This can also be viewed as:

- 1. putting the reconstruction filter at the desired location
- 2. evaluating at the original sample positions
- 3. taking products with the sample values themselves
- 4. summing it up



Important: filter should always be normalized!

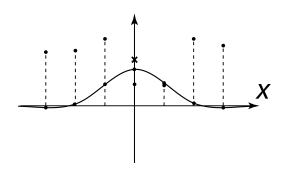
33

# **Practical downsampling**

Downsampling is similar, but filter has larger support and smaller amplitude.

Operationally:

- 1. Choose filter in downsampled space.
- 2. Compute the downsampling rate, *d*, ratio of new sampling rate to old sampling rate
- 3. Stretch the filter by 1/d and scale it down by d
- 4. Follow upsampling procedure (previous slides) to compute new values



34

# 2D resampling

We've been looking at **separable** filters:

$$r_{2D}(x,y) = r_{1D}(x)r_{1D}(y)$$

How might you use this fact for efficient resampling in 2D?