Realistic Character Animation

Reading

- Jessica Hodgins, et.al, Animating Human Athletics, SIGGRAPH '95
- Zoran Popović, Changing Physics for Character Animation, SIGGRAPH ' 00

Modeling Realistic Motion

- Model muscles
- Environment forces
- Energy consumption
- Individual style

Two Approaches

- Simulate robot controllers
- Solve a large optimization that obeys laws of physics and minimized energy consumption

Control Systems

Robot Controllers in Animation

Where do the control laws

 come from?- Observation
- Biomechanical literature
- Optimization
- Intuition

Hierarchy of control laws

1. State machine
2. Control actions
3. Low level control

Hierarchy of control laws

1. State machine
2. Control actions
3. Low level control

Running state machine

Hierarchy of control laws

1. State machine
2. Control actions
3. Low level control

Flight duration

Forward Velocity

Ground speed matching

Balance: roll, pitch, yaw

Mirroring: hips and shoulders

Control laws for all states

Neck: turn in desired facing direction
Shoulder: mirror hip angle
Elbow: mirror magnitude of shoulder
Wrist: constant angle
Waist: keep body upright

Hierarchy of control laws

1. State machine
2. Control actions
3. Low level control

Low level control

$\tau=k\left(\theta_{d}-\theta\right)+k_{v}\left(\dot{\theta}_{d}-\dot{\theta}\right)$

Difference between walking and running

- Walking: double support
- Running: flight phase
- Energy transfer patterns

I Inverted pendulum
I Pogostick

Spacetime constraints

- Animation is an optimal motion that achieves a given set of tasks
- Provides both realism and control

Simulation vs. Spacetime

Forward simulation
I initial value problem

Spacetime constraints
I two-point boundary problem
I muscle forces vary as functions through time

Spacetime particle

A particle with a jet engine

- Interpolate points at specific times
- Be fuel efficient

Equations of motion

- Particle's position as a function of time $x(t)$
- Particle's mass m
- Time-varying jet force $f(t)$
- Constant gravitational force mg

$$
m \ddot{x}-f-m g=0
$$

Constraints

Fly from point a to point b in a fixed time period $t_{1}-t_{0}$

Mechanical constraints

Constraints imposed by the environment
I Forces which can act to satisfy the constraint

Jet engine "Muscle"

Force applied in arbitrary direction

Objective function

Minimize the rate of fuel consumption
Proportional to the force magnitude integral

$$
E=\int_{t_{0}}^{t_{0}}\|f(t)\|^{2} d t
$$

DOF representation

$$
\begin{aligned}
& x_{i}\left(c_{0}^{i}, \ldots, c_{n}^{i} ; t\right) \\
& f_{j}\left(c_{0}^{j}, \ldots, c_{n}^{j} ; t\right)
\end{aligned}
$$

Defined in arbitrary basis:

Computing derivatives

Discretized samples use finite differences

- Newtonian constraint

$$
n_{i}=m \frac{x_{i+1}-2 x_{i}+x_{i-1}}{h^{2}}-f_{i}-m g=0 \quad 1<i<n
$$

- Boundary constraints

$$
\begin{aligned}
& c_{a}=x_{1}-a=0 \\
& c_{b}=x_{n}-b=0
\end{aligned}
$$

- Objective function
$E=h \sum_{i}\left\|f_{i}\right\|^{2}$

Spacetime optimization of complex structures

When optimizing a complex mechanical structure defined by its degrees of freedom

$$
\left[q_{0}, q_{1}, \ldots, q_{n}\right]
$$

things get a lot more complicated

- Newtonian constraints become significantly more complex
- Need to convert forces into generalized forces

Deriving Newtonian constraints

Start with Lagrange's equations of motion

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}}\right)-\frac{\partial T}{\partial q}-Q=0
$$

Derive kinetic energy T and generalized forces Q

Muscles

Muscle force proportional to the difference between the current and desired parameter value

$$
f_{i}=k_{i}\left(q_{j}^{m}-q_{j}\right)
$$

Importance of a good initial position

- Does not converge if the starting point is too far from the solution
- Hard to find the constraint hyper-surface
- Explosion of the number of unknowns

Parameter and constraint explosion

- Parameter space is proportional to

I Number of DOFs
I Length of the optimized time period

- Constraint count is proportional to the time period
- Constraint complexity is proportional to the number of DOFs

