## **Realistic Character Animation**

#### Reading

- Jessica Hodgins, et.al, *Animating Human Athletics*, SIGGRAPH '95
- Zoran Popović, Changing Physics for Character Animation, SIGGRAPH '00

## **Modeling Realistic Motion**

- Model muscles
- Environment forces
- Energy consumption
- Individual style

#### **Two Approaches**

- Simulate robot controllers
- Solve a large optimization that obeys laws of physics and minimized energy consumption

#### **Control Systems**

## **Robot Controllers in Animation**



# Where do the control laws come from?

- Observation
- Biomechanical literature
- Optimization
- Intuition

## **Hierarchy of control laws**

- 1. State machine
- 2. Control actions
- 3. Low level control

5

## **Hierarchy of control laws**

- 1. State machine
- 2. Control actions
- 3. Low level control

## **Running state machine**



### **Hierarchy of control laws**

- 1. State machine
- 2. Control actions
- 3. Low level control

### **Flight duration**



#### **Forward Velocity**







13

### **Ground speed matching**



## **Balance: roll, pitch, yaw**



## **Mirroring: hips and shoulders**



#### **Control laws for all states**

Neck: turn in desired facing direction Shoulder: mirror hip angle Elbow: mirror magnitude of shoulder Wrist: constant angle Waist: keep body upright

#### **Hierarchy of control laws**

- 1. State machine
- 2. Control actions
- 3. Low level control

#### Low level control

$$\tau = k(\theta_d - \theta) + k_v(\dot{\theta}_d - \dot{\theta})$$



## Difference between walking and running

- Walking: double support
- Running: flight phase
- Energy transfer patterns
  - Inverted pendulum
  - Pogostick

17

#### **Spacetime constraints**

- Animation is an optimal motion that achieves a given set of tasks
- Provides both realism and control



#### **Simulation vs. Spacetime**

Forward simulation

I initial value problem

#### Spacetime constraints

- I two-point boundary problem
- I muscle forces vary as functions through time

#### **Spacetime particle**

A particle with a jet engine



Interpolate points at specific times
Be fuel efficient
C<sub>1</sub>

### **Equations of motion**

- Particle's position as a function of time x(t)
- Particle's mass *m*
- Time-varying jet force *f*(*t*)
- Constant gravitational force *mg*

 $m\ddot{x} - f - mg = 0$ 

#### **Constraints**

Fly from point *a* to point *b* in a fixed time period  $t_1$ - $t_0$ 



#### **Mechanical constraints**

Constraints imposed by the environment Forces which can act to satisfy the constraint



#### Jet engine "Muscle"

#### Force applied in arbitrary direction



25

## **Objective function**

Minimize the rate of fuel consumption Proportional to the force magnitude integral

 $E = \int_{t_0}^{t_1} \left\| f(t) \right\|^2 dt$ 

#### **DOF representation** $x_i(c_0^i,...,c_n^i;t)$ $f_i(c_0^j,...,c_n^j;t)$

#### Defined in arbitrary basis:



### **Computing derivatives**



### **Constraints formulation**

Newtonian constraint  $n_{i} = m \frac{x_{i+1} - 2x_{i} + x_{i-1}}{h^{2}} - f_{i} - mg = 0 \quad 1 < i < n$ Boundary constraints  $c_{a} = x_{1} - a = 0$   $c_{b} = x_{n} - b = 0$ Objective function  $minimize \qquad E$   $x_{i}, f_{i} \qquad E$   $x_{i}, f_{i} \qquad x_{i} = 1 < i < n$ Subject to  $n_{i} \quad 1 < i < n$ 

 $E = h \sum_{i} \left\| f_i \right\|^2$ 

# Spacetime optimization of complex structures

When optimizing a complex mechanical structure defined by its degrees of freedom  $[q_0,q_1,...,q_n]$ 

things get a lot more complicated

- Newtonian constraints become significantly more complex
- Need to convert forces into generalized forces

#### **Deriving Newtonian constraints**

| Start with Lagrange's equations of motion                                                              |
|--------------------------------------------------------------------------------------------------------|
| $\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}}\right) - \frac{\partial T}{\partial q} - Q = 0$ |
| Derive kinetic energy <i>T</i> and generalized forces <i>Q</i>                                         |
| 3                                                                                                      |

## **Muscles**

Muscle force proportional to the difference between the current and desired parameter value

$$f_i = k_i \left( q_j^m - q_j \right)$$

# Importance of a good initial position

- Does not converge if the starting point is too far from the solution
- Hard to find the constraint hyper-surface
- Explosion of the number of unknowns

# Parameter and constraint explosion

- Parameter space is proportional to
  - Number of DOFs
  - Length of the optimized time period
- Constraint count is proportional to the time period
- Constraint complexity is proportional to the number of DOFs