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Definitions
• Many graphics techniques that operate only on images
• Image processing: operations that take images as input, 

produce images as output
• In its most general form, an image is a function f from R2

to R
– f( x, y ) gives the intensity of a channel at position (x, y) defined 

over a rectangle, with a finite range:

f: [a,b]x[c,d] → [0,1]
– A color image is just three functions pasted together:

f( x, y ) = (fr( x, y ), fg( x, y ), fb( x, y ))

Images as Functions



What is a digital image?
• In computer graphics, we usually operate on digital 

(discrete) images:
– Sample the space on a regular grid
– Quantize each sample (round to nearest integer)

• If our samples are d apart, we can write this as:

[ , ] ( ( , ))f i j Quantize f i jd d′ = ⋅ ⋅

Sampled digital image

Image processing
• An image processing operation typically defines a new 

image g in terms of an existing image f.
• The simplest operations are those that transform each pixel 

in isolation.  These pixel-to-pixel operations can be 
written:

• Example: threshold, RGB → grayscale

( , ) ( ( , ))g x y t f x y=

Pixel Movement
• Some operations preserve intensities, but move pixels 

around in the image

• Examples: many amusing warps of images

( ,( , ) ( ) ))( , ,u x v xg f yx yy =



Multiple input images
• Some operations define a new image g in terms of n 

existing images (f1, f2, … , fn), where n is greater than 1

• Example: cross-dissolve between 2 input images

( , ) ( , )i i
i

g x y w f x y=∑

Noise

• Common types of noise:
– Salt and pepper noise: contains random occurrences of black and 

white pixels
– Impulse noise: contains random occurrences of white pixels
– Gaussian noise: variations in intensity drawn from a Gaussian 

normal distribution

Noise Examples Ideal noise reduction



Ideal noise reduction Practical noise reduction
• How can we “smooth” away noise in a single image?
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Cross-correlation filtering
• Let’s write this down as an equation.  Assume the averaging window is 

(2k+1)x(2k+1):

• We can generalize this idea by allowing different weights for different 
neighboring pixels:

• This is called a cross-correlation operation and written:  

• H is called the “filter,” “kernel,” or “mask.”
• The above allows negative filter indices.  When you implement need to 

use:  H[u+k,v+k] instead of H[u,v]

Mean kernel
• What’s the kernel for a 3x3 mean filter?
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Mean Filters Gaussian Filtering
• A Gaussian kernel gives less weight to pixels further from 

the center of the window

• This kernel is an approximation of a 
Gaussian function:
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Gaussian Filters
• Gaussian filters weigh pixels based on their distance to the 

location of convolution.

• Blurring noise while preserving features of the image
• Smoothing the same in all directions
• More significance to neighboring pixels
• Width parameterized by σ
• Gaussian functions are separable
• Convolving with multiple Gaussian filters results in a 

single Gausian filter

( )2 2 22
[ , ]

i jh i j e σ− +
=

Convolution
• A convolution operation is a cross-correlation where the 

filter is flipped both horizontally and vertically before 
being applied to the image:

• It is written:  

• Suppose H is a Gaussian or mean kernel.  How does 
convolution differ from cross-correlation?



Gaussian Filters Mean vs. Gaussian filtering

Median Filters
• A Median Filter operates over a k £ k region by selecting 

the median intensity in the region.
• What advantage does a median filter have over a mean 

filter?
• Is a median filter a kind of convolution?

Median Filters



Sampling theorem
•This result is known as the Sampling Theorem and is due to 
Claude Shannon who first discovered it in 1949:

A signal can be reconstructed from its samples without loss of 
information, if the original signal has no frequencies above ½ the 
sampling frequency.

•For a given bandlimited function, the minimum rate at 
which it must be sampled is the Nyquist frequency. 

Reconstruction filters
•The sinc filter, while “ideal”, has two drawbacks:

– It has large support (slow to compute)
– It introduces ringing in practice

•We can choose from many other filters…

Cubic filters
•Mitchell and Netravali (1988) experimented with cubic 
filters, reducing them all to the following form:

•The choice of B or C trades off between being too blurry or 
having too much ringing.  B=C=1/3 was their “visually best”
choice: “Mitchell filter.”
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Reconstruction filters in 2D Edge detection
•One of the most important uses of image processing is edge detection:

– Really easy for humans
– Really difficult for computers

– Fundamental in computer vision
– Important in many graphics applications

•How to tell if a pixel is on an edge?

Edge Detection
• One of the most important uses of image processing is 

edge detection
– Really easy for humans
– Really difficult for computers

– Fundamental in computer vision
– Important in many graphics applications

• What defines an edge?

Gradient
• The gradient is the 2D equivalent of the derivative:

• Properties of the gradient
– It’s a vector
– Points in the direction of maximum increase of f
– Magnitude is rate of increase

• How can we approximate the gradient in a discrete image?

( , ) ,f ff x y
x y

⎛ ⎞∂ ∂∇ = ⎜ ⎟∂ ∂⎝ ⎠



Less than ideal edges

Pixels plotted

0 50 100 150 200 250
0

50

100

150

200

250

300

Edge Detection Algorithms
• Edge detection algorithms typically proceed in three or 

four steps:
– Filtering: cut down on noise
– Enhancement: amplify the difference between edges and non-

edges
– Detection: use a threshold operation
– Localization (optional): estimate geometry of edges beyond pixels

Edge Enhancement
• A popular gradient magnitude computation is the Sobel operator:

• We can then compute the magnitude of the vector (sx,sy)

Sobel Operators



Second derivative operators

• The Sobel operator can produce thick edges.  Ideally, we’re looking 
for infinitely thin boundaries.

• An alternative approach is to look for local extrema in the first 
derivative: places where the change in the gradient is highest.

• Q: A peak in the first derivative corresponds to what   in the second 
derivative?

Localization with the Laplacian
• An equivalent measure of the second derivative in 2D is 

the Laplacian:

• Using the same arguments we used to compute the 
gradient filters, we can derive a Laplacian filter to be:

• Zero crossings of this filter correspond to positions of 
maximum gradient.  These zero crossings can be used to 
localize edges.
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Laplacian alternatives
Localization with the Laplacian
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Laplacian (+128)



Marching squares
• We can convert these signed values into edge contours 

using a “marching squares” technique:

Sharpening with the Laplacian

Original Laplacian (+128)

Original + Laplacian Original - Laplacian

Laplacian of Gaussian Summary
• Formal definitions of image and image processing
• Kinds of image processing: pixel-to-pixel, pixel 

movement, convolution, others
• Types of noise and strategies for noise reduction
• Definition of convolution and how discrete convolution 

works
• The effects of mean, median and Gaussian filtering
• How edge detection is done
• Gradients and discrete approximations


