
Subdivision curves

Reading
Stollnitz, DeRose, and Salesin.  Wavelets for Computer 
Graphics:  Theory and Applications, 1996, section 6.1-6.3, 
A.5.

Subdivision curves
Idea:

repeatedly refine the control polygon

curve is the limit of an infinite process
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Chaikin’s algorithm
Chakin introduced the following “corner-cutting” scheme in 
1974:

Start with a piecewise linear curve
Insert new vertices at the midpoints (the splitting step)
Average each vertex with the “next” neighbor (the averaging step)
Go to the splitting step



Averaging masks
The limit curve is a quadratic B-spline!

Instead of averaging with the nearest neighbor, we can 
generalize by applying an averaging mask during the 
averaging step:

In the case of Chaikin’s algorithm:

r =

1 0 1( , , , , )r r r r−= K K

Lane-Riesenfeld algorithm (1980)
Use averaging masks from Pascal’s triangle:

Gives B-splines of degree n+1.
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Subdivide ad nauseum?
After each split-average step, we are closer to the limit 
surface.  

How many steps until we reach the final (limit) position?

Can we push a vertex to its limit position without infinite 
subdivision?  Yes!

Local subdivision matrix
Consider the cubic B-spline subdivision mask:

Now consider what happens during splitting and averaging:

Relating points at one subdivision level to points at the previous:
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Local subdivision matrix
We can write this as a recurrence relation in matrix form:

Q’s are row vectors and S is the local subdivision matrix.

Looking at the x-coordinate independently:

1

1

1

1

4 4 0
1 1 6 1
8

0 4 4

j j
L L
j j

j j
R R

j j

Q Q
Q Q
Q Q

−

−

−

−

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
=Q SQ

1

1

1

4 4 0
1 1 6 1
8

0 4 4

j j
L L
j j

j j
R R

j j-1

x x
x x
x x

=

−

−

−

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
X SX

Local subdivision matrix, cont’d
Tracking just the x components through subdivision:

The limit position of the x’s is then:

OK, so how do we apply a matrix an infinite number of 
times??
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Eigenvectors and eigenvalues
To solve this problem, we need to look at the eigenvectors and 
eigenvalues of S.  First, a review…

Let v be a vector such that:

Sv = λv

We say that v is an eigenvector with eigenvalue λ.

An nxn matrix can have n eigenvalues and eigenvectors:

For non-defective matrices, the eigenvectors form a basis, which means 
we can re-write X in terms of the eigenvectors:
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To infinity, but not beyond…
Now let’s apply the matrix to the vector X:

Applying it j times:

Let’s assume the eigenvalues are sorted so that:

Now let j go to infinity.

If λ1 > 1, then…

If λ1 < 1, then…

If λ1 = 1, then:

n n n

i i i i i i iSX S a v a Sv a vλ= = =∑ ∑ ∑

n n n
j j j j

i i i i i i iS X S a v a S v a vλ= = =∑ ∑ ∑

1 2 3 nλ λ λ λ> ≥ ≥> L

1 1

n

i i iS X a v a vλ∞ ∞= =∑



Evaluation masks
What are the eigenvalues and eigenvectors of our cubic B-
spline subdivision matrix?

We’re OK!

But where did the x-coordinates end up?
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Evaluation masks, cont’d
To finish up, we need to compute a1.

It turns out that, if we call vi the “right eigenvectors” then there are a 
corresponding set of “left eigenvectors” with the same eigenvalues such 
that:

Using the first left eigenvector, we can compute:

In fact, this works at any subdivision level:

The same result obtains for the y-coordinate:

We call ui an evaluation mask.
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Recipe for subdivision curves
The evaluation mask for the cubic B-spline is:

Now we can cook up a simple procedure for creating subdivision curves:

Subdivide (split+average) the control polygon a few times.  Use the 
averaging mask.
Push the resulting points to the limit positions.  Use the evaluation mask.

Question: what is the tangent to the curve?

Answer: apply the second left eigenvector, u2, as a tangent mask.
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DLG interpolating scheme (1987)
Slight modification to algorithm:

splitting step introduces midpoints
averaging step only changes midpoints

For DLG (Dyn-Levin-Gregory), use:

Since we are only changing the midpoints, the points after the averaging 
step do not move.
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Building complex models Subdivision surfaces
Chaikin’s use of subdivision for curves inspired similar techniques for 
subdivision.

Iteratively refine a control polyhedron (or control mesh) to produce the 
limit surface

using splitting and averaging steps.

There are two types of splitting steps:

vertex schemes
face schemes
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Vertex schemes
A vertex surrounded by n faces is split into n subvertices, one 
for each face: 

Doo-Sabin subdivision:

Face schemes
Each quadrilateral face is split into four subfaces:

Catmull-Clark subdivision:



Face schemes, cont.
Each triangular face is split into four subfaces:

Loop subdivision:

Averaging step
Once again we can use masks for the averaging step:

where

(carefully chosen to ensure smoothness.)
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Adding creases without trim curves
Sometimes,  particular feature such as a crease should be preserved.  With 
NURBS surfaces, this required the use of trim curves. 
For subdivision surfaces, we just modify the subdivision mask:

This gives rise to G0 continuous surfaces.

Creases without trim curves, cont.
Here’s an example using Catmull-Clark surfaces of the kind 
found in Geri’s Game:


