Ray Tracer Project

CSE 557

Ray tracing

- Ray tracing lets you make very realistic renderings
- Can model many different phenomena: shadows (hard and soft), reflection, refractions, caustics, depth of field, motion blur, etc.

Starter code

- 9.5k lines of code that includes:
- Parser for the file format
- Linear algebra classes
- UI/command line parameters
- Classes for camera, lights, materials, rays, and scenes
- Object classes: box, cone, cylinder, etc.

File format

rotate $(1,1,1,1.5$,
box 1

material $=1$

dif
diffuse $=(0.8,0.8,0.3)$;
transmissive $=(0.5,0.5,0.5)$
$/ /$ specular $=(0.3 .0 .3,0.3)$
index $=1.3$;
"
scale (0.707106781187 ,
sphere 1
material $=1$
diffuse $=(0.5,0.5,0.9)$;
${ }_{\text {index }}=1.8 ; \quad$ transmissive $=(0.9,0,9,0,0$
index $=1.8$;
$131.0,0.0,0,9$

Linear algebra

Vec3d v1 (0, 1, 2.5), v2;
Mat4d m;
double d = 3;
$\mathrm{v} 2=\mathrm{d}$ * v 1 ;
v2[2] *= -1;
$\mathrm{d}=(\mathrm{v} 2$ * v 1$)$;
m[0][1] = 2;
$\mathrm{v} 1=\mathrm{m}$ * v 2 ;

Requirement \#1

Triangle-ray intersection

1. Hit or not?
2. If hit, find barycentric coordinates of intersection

Requirement \#3

Phong interpolation of normals for triangle meshes

Requirement \#5

Acceleration

don't need to check them all when rendering this part!

