Ray Tracing

Reading

Required:

- Chapter 10, up to section 10.9
- Section 6.2.2

Further reading:

- T. Whitted. An improved illumination model for shaded display. Communications of the ACM 23(6), 343-349, 1980. [Online]
- A. Glassner. An Introduction to Ray Tracing. Academic Press, 1989. [In the lab.]
- K. Turkowski, "Properties of Surface Normal Transformations," Graphics Gems, 1990, pp. 539547.

Geometric optics

Modern theories of light treat it as both a wave and a particle.

We will take a combined and somewhat simpler view of light - the view of geometric optics.

Here are the rules of geometric optics:

- Light is a flow of photons with wavelengths. We'll call these flows "light rays."
- Light rays travel in straight lines in free space.
- Light rays do not interfere with each other as they cross.
- Light rays obey the laws of reflection and refraction.
- Light rays travel form the light sources to the eye, but the physics is invariant under path reversal (reciprocity).

Synthetic pinhole camera

The most common imaging model in graphics is the synthetic pinhole camera: light rays are collected through an infinitesimally small hole and recorded on an image plane.

For convenience, the image plane is usually placed in front of the camera, giving a non-inverted

Viewing rays emanate from the center of projection (COP) at the center of the lens (or pinhole).

The image of an object point P is at the intersection of the viewing ray through P and the image plane.

Eye vs. light ray tracing

Where does light begin?
At the light: light ray tracing (a.k.a., forward ray tracing or photon tracing)

At the eye: eye ray tracing (a.k.a., backward ray tracing)

We will generally follow rays from the eye into the scene.

Precursors to ray tracing

Local illumination

- Cast one eye ray, then shade according to light

Appel (1968)

- Cast one eye ray + one ray to light

Whitted ray-tracing algorithm

In 1980, Turner Whitted introduced ray tracing to the graphics community.

- Combines eye ray tracing + rays to light
- Recursively traces rays

Algorithm:

1. For each pixel, trace a primary ray in direction \mathbf{V} to the first visible surface.
2. For each intersection, trace secondary rays:

- Shadow rays in directions L_{i} to light sources
- Reflected ray in direction R.
- Refracted ray or transmitted ray in direction T.

Whitted algorithm (cont'd)

Let's look at this in stages:

Ray casting and local illumination

Now let's actually build the ray tracer in stages. We'll start with ray casting and local illumination:

Direct illumination

A ray is defined by an origin \mathbf{P} and a unit direction \mathbf{d} and is parameterized by t :

$$
P+t \mathbf{d}
$$

Let $I(P, \mathbf{d})$ be the intensity seen along a ray. Then:

$$
I(P, \mathbf{d})=I_{\text {direct }}
$$

where

- $I_{\text {direct }}$ is computed from the Phong model

Ray-tracing pseudocode

We build a ray traced image by casting rays through each of the pixels.
function tracelmage (scene):
for each pixel (i, j) in image
$A=$ pixelToWorld (i, j)
$P=\mathbf{C O P}$
$\mathbf{d}=(A-P) /\|A-P\|$
$I(i, j)=\operatorname{traceRay}($ scene $, P, \mathbf{d})$
end for
end function
function traceRay(scene, P, \mathbf{d}):
($\mathrm{t}, \mathbf{N}, \mathrm{mtrl}) \leftarrow$ scene.intersect (P, \mathbf{d})
$Q \leftarrow \operatorname{ray}(P, \mathbf{d})$ evaluated at t
I = shade()
return I
end function

Shading pseudocode

Next, we need to calculate the color returned by the shade function.
function shade(mtrl, scene, $Q, \mathbf{N}, \mathbf{d})$:
$I \leftarrow$ mtrl. $k_{e}+$ mtrl. $k_{a}{ }^{*} l_{a}$
for each light source L do:
atten = L -> distanceAttenuation()
$I \leftarrow I+$ atten*(diffuse term + specular term)
end for
return I
end function

Ray casting with shadows

Now we'll add shadows by casting shadow rays:

Shading with shadows

To include shadows, we need to modify the shade function:
function shade(mtrl, scene, $Q, \mathbf{N}, \mathbf{d})$:
$\mathrm{I} \leftarrow$ mtrl. $\mathrm{k}_{\mathrm{e}}+$ mtrl. $\mathrm{k}_{\mathrm{a}}{ }^{*} \mathrm{I}_{\mathrm{a}}$
for each light source L do:
atten $=\mathrm{L}$-> distanceAttenuation (Q) *
L-> shadowAttenuation()
$\mathrm{I} \leftarrow \mathrm{I}+$ atten*(diffuse term + specular term)
end for
return I
end function

Shadow attenuation

Computing a shadow can be as simple as checking to see if a ray makes it to the light source.

For a point light source:
function PointLight::shadowAttenuation(scene, P)
$\mathbf{d}=$ (this.position $-P$).normalize ()
$(\mathrm{t}, \mathbf{N}, \mathrm{mtrl}) \leftarrow$ scene.intersect (P, \mathbf{d})
Compute $t_{\text {light }}$
if $\left(t<t_{\text {light }}\right)$ then:
atten $=0$
else
atten $=1$
end if
return atten
end function

Shadow attenuation (cont'd)

Q: What if there are transparent objects along a path to the light source?
[Suppose for simplicity that each object has a multiplicative transparency constant, k_{t}.]

Photon mapping

Combine light ray tracing (photon tracing) and eye ray tracina:

...to get photon mapping.

Renderings by Henrik Wann Jensen:
http://graphics.ucsd.edu/~henrik/
images/caustics.html

Shading in "Trace"

The Trace project uses a version of the Phong shading equation we derived in class, with two modifications:

- Shadow attenuation is clamped to be at least 1 :

$$
A_{j}^{\text {dist }}=\min \left\{1, \frac{1}{a_{j}+b_{j} d_{j}+c_{j} d_{j}^{2}}\right\}
$$

- Shadow attenuation $A^{\text {shadow }}$ is included.

Here's what it should look like:

$$
\begin{aligned}
I= & k_{e}+k_{a} L_{a} \\
& +\sum_{j} A_{j}^{\text {shadow }} A_{j}^{\text {dist }} L_{j}\left[k_{d}\left(\mathbf{N} \cdot \mathbf{L}_{j}\right)_{+}+k_{s}\left(\mathbf{V} \cdot \mathbf{R}_{j}\right)_{+}^{n_{s}}\right]
\end{aligned}
$$

l.e., we are not using the OpenGL shading equation, which is somewhat different.

Note: the " R " here is the reflection of the light about the surface normal.

Recursive ray tracing with reflection

Now we'll add reflection:

Shading with reflection

Let $l(P, \mathbf{d})$ be the intensity seen along a ray. Then:

$$
I(P, \mathbf{d})=I_{\text {direct }}+I_{\text {reflected }}
$$

where

- $I_{\text {direct }}$ is computed from the Phong model
- $I_{\text {reflected }}=k_{r} I(Q, \mathbf{R})$

Typically, we set $k_{r}=k_{\mathrm{s}}$.

Reflection

Law of reflection:

$$
\theta_{i}=\theta_{r}
$$

\mathbf{R} is co-planar with \mathbf{d} and \mathbf{N}.

Ray-tracing pseudocode, revisited

function traceRay(scene, P, \mathbf{d}):
($\mathrm{t}, \mathbf{N}, \mathrm{mtrl}) \leftarrow$ scene.intersect (P, \mathbf{d})
$Q \leftarrow \operatorname{ray}(P, \mathbf{d})$ evaluated at t
I = shade(scene, mtrl, P, N, -d)
$\mathbf{R}=$ reflectDirection ()
$\mathrm{I} \leftarrow \mathrm{I}+$ mtrl. k_{r} * traceRay(scene, Q, \mathbf{R})
return 1
end function

Terminating recursion

Q: How do you bottom out of recursive ray tracing?

Possibilities:

Whitted ray tracing

Finally, we'll add refraction, giving us the Whitted ray tracing model:

Shading with reflection and refraction

Let $I(P, \mathbf{d})$ be the intensity seen along a ray. Then:

$$
I(P, \mathbf{d})=I_{\text {direct }}+I_{\text {reflected }}+I_{\text {transmitted }}
$$

where

- $I_{\text {direct }}$ is computed from the Phong model
- $I_{\text {reflected }}=k_{r} I(Q, \mathbf{R})$
- $I_{\text {transmitted }}=k_{t} I(Q, \mathbf{T})$

Typically, we set $k_{r}=k_{\mathrm{s}}$ and $k_{t}=1-k_{\mathrm{s}}$ (or 0 , if opaque).
[Generally, k_{r} and k_{t} are determined by "Fresnel reflection," which depends on angle of incidence and changes the polarization of the light. Shirley discusses an approximation in Section 10.6.]

Refraction

Snell's law of refraction:

$$
\eta_{\mathrm{i}} \sin \theta_{\mathrm{i}}=\eta_{\mathrm{t}} \sin \theta_{\mathrm{t}}
$$

where $\eta_{\mathrm{i}}, \eta_{\mathrm{t}}$ are indices of refraction.

In all cases, \mathbf{R} and \mathbf{T} are coplanar with \mathbf{d} and \mathbf{N}.

The index of refraction is material dependent.
It can also vary with wavelength, an effect called dispersion that explains the colorful light rainbows from prisms. (We will generally assume no dispersion.)

Medium	Index of refraction
Vaccum	1
Air	1.0003
Water	1.33
Fused quartz	1.46
Glass, crown	1.52
Glass, dense flint	1.66
Diamond	2.42

Index of refraction variation for fused quartz

Total Internal Reflection

The equation for the angle of refraction can be computed from Snell's law:

What happens when $\eta_{\mathrm{i}}>\eta_{\mathrm{t}}$?
When θ_{t} is exactly 90°, we say that θ_{l} has achieved the "critical angle" θ_{c}.

For $\theta_{l}>\theta_{c}$, no rays are transmitted, and only reflection occurs, a phenomenon known as "total internal reflection" or TIR.

Ray-tracing pseudocode, revisited

function traceRay(scene, P, \mathbf{d}):
($\mathrm{t}, \mathbf{N}, \mathrm{mtrl}) \leftarrow$ scene.intersect (P, \mathbf{d})
$Q \leftarrow \operatorname{ray}(P, \mathbf{d})$ evaluated at t
$\mathrm{I}=$ shade(scene, mtrl, $P, \mathbf{N},-\mathbf{d})$
$\mathbf{R}=$ reflectDirection $(\mathbf{N},-\mathbf{d})$
$\mathrm{I} \leftarrow \mathrm{I}+$ mtrl. $_{\mathrm{r}}$ * traceRay(scene, Q, \mathbf{R})
if ray is entering object then
n_i = index_of_air
$\mathrm{n} _\mathrm{t}=\mathrm{mtrl}$.index
else
$\mathrm{n}_{\mathrm{i}} \mathrm{i}=$ mtrl.index
n_t = index_of_air
if (notTIR ()) then
$\mathbf{T}=$ refractDirection ()
$\mathrm{I} \leftarrow \mathrm{I}+\mathrm{mtrl} . \mathrm{k}_{\mathrm{t}} * \operatorname{traceRay}($ scene, $\mathrm{Q}, \mathbf{T})$
end if
return I
end function

Terminating recursion, incl. refraction

Q: Now how do you bottom out of recursive ray tracing?

Intersecting rays with spheres

Now we've done everything except figure out what that "scene.intersect(P, \mathbf{d})" function does.

Mostly, it calls each object to find out the t value at which the ray intersects the object. Let's start with intersecting spheres...

Given:

- The coordinates of a point along a ray passing through P in the direction \mathbf{d} are:

$$
\begin{aligned}
& x=P_{x}+t d_{x} \\
& y=P_{y}+t d_{y} \\
& z=P_{z}+t d_{z}
\end{aligned}
$$

- A unit sphere S centered at the origin defined by the equation:

Find: The t at which the ray intersects S.

Intersecting rays with spheres

Solution by substitution:

$$
\begin{array}{r}
x^{2}+y^{2}+z^{2}-1=0 \\
\left(P_{x}+t d_{x}\right)^{2}+\left(P_{y}+t d_{y}\right)^{2}+\left(P_{z}+t d_{z}\right)^{2}-1=0 \\
a t^{2}+b t+c=0
\end{array}
$$

where

$$
\begin{aligned}
& a=d_{x}^{2}+d_{y}^{2}+d_{z}^{2} \\
& b=2\left(P_{x} d_{x}+P_{y} d_{y}+P_{z} d_{z}\right) \\
& c=P_{x}^{2}+P_{y}^{2}+P_{z}^{2}-1
\end{aligned}
$$

Q: What are the solutions of the quadratic equation in t and what do they mean?

Ray-plane intersection

We can write the equation of a plane as:

$$
a x+b y+c z=d
$$

The coefficients a, b, and c form a vector that is normal to the plane, $\mathbf{n}=[a b c]^{\top}$. Thus, we can rewrite the plane equation as:

We can solve for the intersection parameter (and thus the point):

Q: What is the normal to the sphere at a point (x, y, z) on the sphere?

Ray-triangle intersection

To intersect with a triangle, we first solve for the equation of its supporting plane.

How might we compute the (un-normalized) normal?

Given this normal, how would we compute d ?

Using these coefficients, we can solve for Q. Now, we need to decide if Q is inside or outside of the triangle.

Solution 1: compute barycentric coordinates from 3D points.

What do you do with the barycentric coordinates?

Ray-triangle intersection

Solution 2: project down a dimension and compute barycentric coordinates from 2D points.

Why is solution 2 possible? Why is it legal? Why is it desirable? Which axis should you "project away"?

Interpolating vertex properties

The barycentric coordinates can also be used to interpolate vertex properties such as:

- material properties
- texture coordinates
- normals

For example:

$$
k_{d}(Q)=\alpha k_{d}(A)+\beta k_{d}(B)+\gamma k_{d}(C)
$$

Interpolating normals, known as Phong interpolation, gives triangle meshes a smooth shading appearance. (Note: don't forget to normalize interpolated normals.)

Epsilons

Due to finite precision arithmetic, we do not always get the exact intersection at a surface.

Q: What kinds of problems might this cause?

Intersecting with xformed geometry

In general, objects will be placed using transformations. What if the object being intersected were transformed by a matrix M?

Apply M^{-1} to the ray first and intersect in object (local) coordinates!

Intersecting with xformed geometry

The intersected normal is in object (local) coordinates. How do we transform it to world coordinates?

