
1

Ray Tracing

2

Reading

Required:

Chapter 10, up to section 10.9

Section 6.2.2

Further reading:

T. Whitted. An improved illumination model for
shaded display. Communications of the ACM 23(6),
343-349, 1980. [Online]

A. Glassner. An Introduction to Ray Tracing.
Academic Press, 1989. [In the lab.]

K. Turkowski, “Properties of Surface Normal
Transformations,” Graphics Gems, 1990, pp. 539-
547.

3

Geometric optics

Modern theories of light treat it as both a wave and a
particle.

We will take a combined and somewhat simpler view
of light – the view of geometric optics.

Here are the rules of geometric optics:

Light is a flow of photons with wavelengths.
We'll call these flows “light rays.”

Light rays travel in straight lines in free space.

Light rays do not interfere with each other as
they cross.

Light rays obey the laws of reflection and
refraction.

Light rays travel form the light sources to the
eye, but the physics is invariant under path
reversal (reciprocity).

4

Synthetic pinhole camera

The most common imaging model in graphics is the
synthetic pinhole camera: light rays are collected
through an infinitesimally small hole and recorded
on an image plane.

For convenience, the image plane is usually placed in
front of the camera, giving a non-inverted

Viewing rays emanate from the center of projection
(COP) at the center of the lens (or pinhole).

The image of an object point P is at the intersection
of the viewing ray through P and the image plane.

5

Eye vs. light ray tracing

Where does light begin?

At the light: light ray tracing (a.k.a., forward ray
tracing or photon tracing)

At the eye: eye ray tracing (a.k.a., backward ray
tracing)

We will generally follow rays from the eye into the
scene.

6

Precursors to ray tracing

Local illumination

Cast one eye ray, then shade according to light

Appel (1968)

Cast one eye ray + one ray to light

7

Whitted ray-tracing algorithm

In 1980, Turner Whitted introduced ray tracing to the
graphics community.

Combines eye ray tracing + rays to light
Recursively traces rays

Algorithm:

1. For each pixel, trace a primary ray in direction V to the
first visible surface.

2. For each intersection, trace secondary rays:

Shadow rays in directions Li to light sources
Reflected ray in direction R.
Refracted ray or transmitted ray in direction T.

8

Whitted algorithm (cont'd)

Let's look at this in stages:

9

Ray casting and local illumination

Now let’s actually build the ray tracer in stages. We’ll
start with ray casting and local illumination:

10

Direct illumination

A ray is defined by an origin P and a unit direction d
and is parameterized by t:

P + td

Let I(P, d) be the intensity seen along a ray. Then:

I(P, d) = Idirect

where

Idirect is computed from the Phong model

11

Ray-tracing pseudocode

We build a ray traced image by casting rays through
each of the pixels.

function traceImage (scene):

for each pixel (i,j) in image

A = pixelToWorld(i,j)

P = COP

d = (A - P)/|| A – P||

I(i,j) = traceRay(scene, P, d)

end for

end function

function traceRay(scene, P, d):

(t, N, mtrl) ← scene.intersect (P, d)

Q ray (P, d) evaluated at t

I = shade()

return I

end function

12

Shading pseudocode

Next, we need to calculate the color returned by the
shade function.

function shade(mtrl, scene, Q, N, d):

I ← mtrl.ke + mtrl. ka * Ia
for each light source L do:

atten = L -> distanceAttenuation()

I ← I + atten*(diffuse term + specular term)

end for

return I

end function

13

Ray casting with shadows

Now we’ll add shadows by casting shadow rays:

14

Shading with shadows

To include shadows, we need to modify the shade
function:

function shade(mtrl, scene, Q, N, d):

I ← mtrl.ke + mtrl. ka * Ia
for each light source L do:

atten = L -> distanceAttenuation(Q) *

L -> shadowAttenuation()

I ← I + atten*(diffuse term + specular term)

end for

return I

end function

15

Shadow attenuation

Computing a shadow can be as simple as checking to
see if a ray makes it to the light source.

For a point light source:

function PointLight::shadowAttenuation(scene, P)

d = (this.position - P).normalize()

(t, N, mtrl) ← scene.intersect(P, d)

Compute tlight
if (t < tlight) then:

atten = 0

else

atten = 1

end if

return atten

end function

16

Shadow attenuation (cont’d)

Q: What if there are transparent objects along a path to
the light source?

[Suppose for simplicity that each object has a
multiplicative transparency constant, kt.]

[See Shirley’s Section 10.6 for discussion of “Beer’s Law”
for more realistic attenuation.]

17

Photon mapping

Combine light ray tracing (photon tracing) and eye ray
tracing:

…to get photon mapping.

Renderings by Henrik Wann
Jensen:
http://graphics.ucsd.edu/~henrik/
images/caustics.html

18

Shading in “Trace”

The Trace project uses a version of the Phong shading
equation we derived in class, with two modifications:

Shadow attenuation is clamped to be at least 1:

Shadow attenuation Ashadow is included.

Here’s what it should look like:

I.e., we are not using the OpenGL shading equation,
which is somewhat different.

Note: the “R” here is the reflection of the light about
the surface normal.

 + ⋅ ⋅ ∑ s

e a a

n
j d j + s j +

j

I = k + k L

L k + kN L V Rj j
shadow distA A () ()

  =  
  

2
j j j j ja + b d +c d

1
min 1,dist

jA

19

Recursive ray tracing with reflection

Now we’ll add reflection:

20

Shading with reflection

Let I(P, d) be the intensity seen along a ray. Then:

I(P, d) = Idirect + Ireflected

where

Idirect is computed from the Phong model

Ireflected = kr I (Q, R)

Typically, we set kr = ks.

21

Reflection

Law of reflection:

θi = θr

R is co-planar with d and N.

22

Ray-tracing pseudocode, revisited

function traceRay(scene, P, d):

(t, N, mtrl) ← scene.intersect (P, d)

Q ray (P, d) evaluated at t

I = shade(scene, mtrl, P, N, -d)

R = reflectDirection()

I ← I + mtrl.kr ∗ traceRay(scene, Q, R)

return I

end function

23

Terminating recursion

Q: How do you bottom out of recursive ray tracing?

Possibilities:

24

Whitted ray tracing

Finally, we’ll add refraction, giving us the Whitted ray
tracing model:

25

Shading with reflection and refraction

Let I(P, d) be the intensity seen along a ray. Then:

I(P, d) = Idirect + Ireflected + Itransmitted

where

Idirect is computed from the Phong model
Ireflected = kr I (Q, R)
Itransmitted = ktI (Q, T)

Typically, we set kr = ks and kt = 1 – ks (or 0, if opaque).

[Generally, kr and kt are determined by “Fresnel
reflection,” which depends on angle of incidence and
changes the polarization of the light. Shirley discusses
an approximation in Section 10.6.]

26

Refraction

Snell's law of refraction:

ηi sinθi = ηt sin θt

where ηi , ηt are indices of
refraction.

In all cases, R and T are co-
planar with d and N.

The index of refraction is material dependent.

It can also vary with wavelength, an effect called
dispersion that explains the colorful light rainbows
from prisms. (We will generally assume no dispersion.)

27

Total Internal Reflection

The equation for the angle of refraction can be
computed from Snell's law:

What happens when ηi > ηt?

When θt is exactly 90°, we say that θI has achieved the
“critical angle” θc .

For θI > θc , no rays are transmitted, and only reflection
occurs, a phenomenon known as “total internal
reflection” or TIR.

28

Ray-tracing pseudocode, revisited

function traceRay(scene, P, d):

(t, N, mtrl) ← scene.intersect (P, d)

Q ray (P, d) evaluated at t

I = shade(scene, mtrl, P, N, -d)

R = reflectDirection(N, -d)

I ← I + mtrl.kr ∗ traceRay(scene, Q, R)

if ray is entering object then

n_i = index_of_air

n_t = mtrl.index

else

n_i = mtrl.index

n_t = index_of_air

if (notTIR ()) then

T = refractDirection ()

I ← I + mtrl.kt ∗ traceRay(scene, Q, T)

end if

return I

end function

29

Terminating recursion, incl. refraction

Q: Now how do you bottom out of recursive ray
tracing?

30

Intersecting rays with spheres

Now we’ve done everything except figure out what that
“scene.intersect(P, d)” function does.

Mostly, it calls each object to find out the t value at which
the ray intersects the object. Let’s start with intersecting
spheres…

Given:

The coordinates of a point along a ray passing
through P in the direction d are:

A unit sphere S centered at the origin defined by the
equation:

Find: The t at which the ray intersects S.

= +
= +

= +

x x

y y

z z

x P td

y P td

z P td

31

Intersecting rays with spheres

Solution by substitution:

where

Q: What are the solutions of the quadratic equation in
t and what do they mean?

Q: What is the normal to the sphere at a point (x,y,z)
on the sphere?

2 2 2

2 2 2

2

1 0

() () () 1 0

0

x x y y z z

x y z

P td P td P td

at bt c

+ + − =

+ + + + + − =

+ + =

= + +
= + +

= + + −

2 2 2

2 2 2

2()

1

x y z

x x y y z z

x y z

a d d d

b P d P d P d

c P P P

32

Ray-plane intersection

We can write the equation of a plane as:

The coefficients a, b, and c form a vector that is
normal to the plane, n = [a b c]T. Thus, we can re-
write the plane equation as:

We can solve for the intersection parameter (and thus
the point):

+ + =ax by cz d

33

Ray-triangle intersection

To intersect with a triangle, we first solve for the
equation of its supporting plane.

How might we compute the (un-normalized) normal?

Given this normal, how would we compute d?

Using these coefficients, we can solve for Q. Now, we
need to decide if Q is inside or outside of the triangle.

Solution 1: compute barycentric coordinates from 3D
points.

What do you do with the barycentric coordinates?

34

Ray-triangle intersection

Solution 2: project down a dimension and compute
barycentric coordinates from 2D points.

Why is solution 2 possible? Why is it legal? Why is it
desirable? Which axis should you “project away”?

35

Interpolating vertex properties

The barycentric coordinates can also be used to
interpolate vertex properties such as:

material properties

texture coordinates

normals

For example:

Interpolating normals, known as Phong interpolation,
gives triangle meshes a smooth shading appearance.
(Note: don’t forget to normalize interpolated
normals.)

α β γ= + +() () () ()d d d dk Q k A k B k C

36

Epsilons

Due to finite precision arithmetic, we do not always
get the exact intersection at a surface.

Q: What kinds of problems might this cause?

Q: How might we resolve this?

37

Intersecting with xformed geometry

In general, objects will be placed using
transformations. What if the object being
intersected were transformed by a matrix M?

Apply M-1 to the ray first and intersect in object (local)
coordinates!

38

Intersecting with xformed geometry

The intersected normal is in object (local) coordinates.
How do we transform it to world coordinates?

