
1

Shading

2

Reading

Required:

Shirley, Chapter 9

3

Introduction

Affine transformations help us to place objects into a
scene.

Before creating images of these objects, we’ll look at
models for how light interacts with their surfaces.

Such a model is called a shading model.

Other names:

Lighting model

Light reflection model

Local illumination model

Reflectance model

BRDF

4

An abundance of photons

Properly determining the right color is really hard.

Look around the room. Each light source has
different characteristics. Trillions of photons are
pouring out every second.

These photons can:

interact with the atmosphere, or with things in
the atmosphere

strike a surface and
• be absorbed

• be reflected (scattered)

• cause fluorescence or phosphorescence.

interact in a wavelength-dependent manner

generally bounce around and around

5

Our problem

We’re going to build up to an approximation of
reality called the Phong illumination model.

It has the following characteristics:

not physically based

gives a “first-order” approximation to physical
light reflection

very fast

widely used

In addition, we will assume local illumination, i.e.,
light goes: light source -> surface -> viewer.

No interreflections, no shadows.

6

Setup…

Given:

a point P on a surface visible through pixel p

The normal N at P

The lighting direction, L, and intensity, L ,at P

The viewing direction, V, at P

The shading coefficients at P

Compute the color, I, of pixel p.

Assume that the direction vectors are normalized:

= = =N L V 1

7

“Iteration zero”

The simplest thing you can do is…

Assign each polygon a single color:

where

I is the resulting intensity

ke is the emissivity or intrinsic shade associated
with the object

This has some special-purpose uses, but not really
good for drawing a scene.

[Note: ke is omitted in Shirley.]

eI = k

8

“Iteration one”

Let’s make the color at least dependent on the
overall quantity of light available in the scene:

ka is the ambient reflection coefficient.
• really the reflectance of ambient light

• “ambient” light is assumed to be equal in all
directions

La is the ambient light intensity.

Physically, what is “ambient” light?

[Note: Shirley uses cr and ca instead of ka and La.

= +e a aI k k L

9

Wavelength dependence

Really, ke, ka, and La are functions over all
wavelengths λ.

Ideally, we would do the calculation on these
functions. For the ambient shading equation, we
would start with:

then we would find good RGB values to represent the
spectrum I(λ).

Traditionally, though, ka and Ia are represented as
RGB triples, and the computation is performed on
each color channel separately:

λ λ λa aI = k L() () ()

R a,R a,R

G a,G a,G

B a,B a,B

I = k L
I = k L
I = k L

10

Diffuse reflection

Let’s examine the ambient shading model:

objects have different colors

we can control the overall light intensity
• what happens when we turn off the lights?

• what happens as the light intensity increases?

• what happens if we change the color of the
lights?

So far, objects are uniformly lit.

not the way things really appear

in reality, light sources are localized in position
or direction

Diffuse, or Lambertian reflection will allow reflected
intensity to vary with the direction of the light.

11

Diffuse reflectors

Diffuse reflection occurs from dull, matte surfaces,
like latex paint, or chalk.

These diffuse or Lambertian reflectors reradiate
light equally in all directions.

Picture a rough surface with lots of tiny microfacets.

12

Diffuse reflectors

…or picture a surface with little pigment particles
embedded beneath the surface (neglect reflection at
the surface for the moment):

The microfacets and pigments distribute light rays in
all directions.

Embedded pigments are responsible for the
coloration of diffusely reflected light in plastics and
paints.

Note: the figures above are intuitive, but not strictly
(physically) correct.

13

Diffuse reflectors, cont.

The reflected intensity from a diffuse surface does
not depend on the direction of the viewer. The
incoming light, though, does depend on the
direction of the light source:

14

“Iteration two”

The incoming energy is proportional to , giving
the diffuse reflection equations:

where:

kd is the diffuse reflection coefficient

L is the intensity of the light source

N is the normal to the surface (unit vector)

L is the direction to the light source (unit
vector)

(x)+ means max {0,x}

[Note: Shirley uses cr and cl instead of kd and L.]

____e a a d

e a a d

I = k + k L + k L

= k + k I + k L()

15

Specular reflection

Specular reflection accounts for the highlight that
you see on some objects.

It is particularly important for smooth, shiny surfaces,
such as:

metal

polished stone

plastics

apples

skin

Properties:

Specular reflection depends on the viewing
direction V.

For non-metals, the color is determined solely
by the color of the light.

For metals, the color may be altered (e.g., brass)

16

Specular reflection “derivation”

For a perfect mirror reflector, light is reflected about
N, so

For a near-perfect reflector, you might expect the
highlight to fall off quickly with increasing angle φ.

Also known as:

“rough specular” reflection

“directional diffuse” reflection

“glossy” reflection

=
=

if

0 otherwise

L
I

V R

17

Derivation, cont.

One way to get this effect is to take (R·V), raised to a
power ns.

As ns gets larger,

the dropoff becomes {more,less} gradual

gives a {larger,smaller} highlight

simulates a {more,less} mirror-like surface

 0.2

 0.4

 0.6

 0.8

 1.0

30

210

240

90

300

150

330

180 0

N

V
L R

60120

100 80 60 40 20 0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cosns φ

φ

ns = 1

ns = 128

18

“Iteration three”

The next update to the Phong shading model is then:

where:

ks is the specular reflection coefficient

ns is the specular exponent or shininess

R is the reflection of the light about the normal
(unit vector)

V is viewing direction (unit vector)

[Note: Shirley uses e, r, and p instead of V, R, and ns.
Also, OpenGL uses a separate Ld and Ls, instead of a
single L.]

⋅ ⋅L L s
e a a d + s +

nI = k + k I + k + k() ()N L V R

19

Lights

OpenGL supports three different kinds of lights:
ambient, directional, and point. Spot lights are also
supported as a special form of point light.

We’ve seen ambient light sources, which are not
really geometric.

Directional light sources have a single direction and
intensity associated with them.

[Note: Lights not discussed in Shirley.]

20

Point lights

The direction of a point light sources is determined
by the vector from the light position to the surface
point.

Physics tells us the intensity must drop off inversely
with the square of the distance:

Sometimes, this distance-squared dropoff is
considered too “harsh.” A common alternative is:

with user-supplied constants for a, b, and c.

E - P
L =

E - P

d = E - P

= 2a+ bd + cdatten
1

f

= 2datten
1

f

21

Spotlights

OpenGL also allows one to apply a directional
attenuation of a point light source, giving a spotlight
effect.

The spotlight intensity factor is computed in OpenGL
as:

where

L is the direction to the point light.
S is the center direction of the spotlight.

β is the cutoff angle for the spotlight
e is the angular falloff coefficient

()β⋅f =
spot

e
L S

() (){ }β β = − max acos , 0e e
x x

22

“Iteration four”

Since light is additive, we can handle multiple lights
by taking the sum over every light.

Our equation is now:

This is the Phong illumination model.

Which quantities are spatial vectors?

Which are RGB triples?

Which are scalars?

()
() ()β

⋅
 ⋅ ⋅ ∑

j
j j

j

e
L S

s

e a a

n

j d j s j2 + +
j j j j j j

I = k + k L +

L k + k
a + b d + c d

N L V R

23

Choosing the parameters

Experiment with different parameter settings. To get
you started, here are a few suggestions:

Try ns in the range [0,100]

Try ka + kd + ks < 1

Use a small ka (~0.1)

0varying0Planet

Medium,
white

Medium,
color of
plastic

mediumPlastic

Large, color
of metal

Small, color
of metal

largeMetal

kskdns

24

Materials in OpenGL

The OpenGL code to specify the surface shading
properties is fairly straightforward. For example:

GLfloat ke[] = { 0.1, 0.15, 0.05, 1.0 };

GLfloat ka[] = { 0.1, 0.15, 0.1, 1.0 };

GLfloat kd[] = { 0.3, 0.3, 0.2, 1.0 };

GLfloat ks[] = { 0.2, 0.2, 0.2, 1.0 };

GLfloat ns[] = { 50.0 };

glMaterialfv(GL_FRONT, GL_EMISSION, ke);

glMaterialfv(GL_FRONT, GL_AMBIENT, ka);

glMaterialfv(GL_FRONT, GL_DIFFUSE, kd);

glMaterialfv(GL_FRONT, GL_SPECULAR, ks);

glMaterialfv(GL_FRONT, GL_SHININESS, ns);

Notes:

The GL_FRONT parameter tells OpenGL that we
are specifiying the materials for the front of the
surface.

Only the alpha value of the diffuse color is used
for blending. It’s usually set to 1.

25

Shading in OpenGL

The OpenGL lighting model allows you to associate
different lighting colors according to material
properites they will influence.

Thus, our original shading equation:

becomes:

where you can have a global ambient light with
intensity La in addition to have an ambient light
intensity La j associated with each individual light.

()β
⋅

 ⋅ ⋅ ∑ s

e a a

n
a a j d d j j + s s j j +2

j j j j j j

I = k + k L +

k L + k L + k L
a + b d + c d

N L V R

j
j j

j

e
L S

() ()

()
() ()β

⋅
 ⋅ ⋅ ∑

j
j j

j

e
L S

s

e a a

n

j d j s j2 + +
j j j j j j

I = k + k L +

L k + k
a + b d + c d

N L V R

26

Shading in OpenGL, cont’d

In OpenGL this equation, for one light source (the 0th) is
specified something like:

GLfloat La[] = { 0.2, 0.2, 0.2, 1.0 };

GLfloat La0[] = { 0.1, 0.1, 0.1, 1.0 };

GLfloat Ld0[] = { 1.0, 1.0, 1.0, 1.0 };

GLfloat Ls0[] = { 1.0, 1.0, 1.0, 1.0 };

GLfloat pos0[] = { 1.0, 1.0, 1.0, 0.0 };

GLfloat a0[] = { 1.0 };

GLfloat b0[] = { 0.5 };

GLfloat c0[] = { 0.25 };

GLfloat S0[] = { -1.0, -1.0, 0.0 };

GLfloat beta0[] = { 45 };

GLfloat e0[] = { 2 };

glLightModelfv(GL_LIGHT_MODEL_AMBIENT, La);

glLightfv(GL_LIGHT0, GL_AMBIENT, La0);

glLightfv(GL_LIGHT0, GL_DIFFUSE, Ld0);

glLightfv(GL_LIGHT0, GL_SPECULAR, Ls0);

glLightfv(GL_LIGHT0, GL_POSITION, pos0);

glLightfv(GL_LIGHT0, GL_CONSTANT_ATTENUATION, a0);

glLightfv(GL_LIGHT0, GL_LINEAR_ATTENUATION, b0);

glLightfv(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, c0);

glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, S0);

glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, beta0);

glLightf(GL_LIGHT0, GL_SPOT_EXPONENT, e0);

27

Shading in OpenGL, cont’d

Notes:

You can have as many as GL_MAX_LIGHTS lights in a
scene. This number is system-dependent.

For directional lights, you specify a light direction,
not position, and the attenuation and spotlight terms
are ignored.

The directions of directional lights and spotlights are
specified in the coordinate systems of the lights, not
the surface points as we’ve been doing in lecture.

28

BRDF

The Phong illumination model is really a function
that maps light from incoming (light) directions ωin to
outgoing (viewing) directions ωout:

This function is called the Bi-directional Reflectance
Distribution Function (BRDF).

Here’s a plot with ωin held constant:

BRDF’s can be quite sophisticated…

(,)outinrf ω ω

(,)outinrf ω ω
ωin

29

More sophisticated BRDF’s

Westin, Arvo, Torrance 1992

Cook and
Torrance, 1982

