Subdivision curves

Reading

Recommended:

+ Stollnitz, DeRose, and Salesin. Wavelets for
Computer Graphics: Theory and Applications,
1996, section 6.1-6.3, A.5.

Note: there is an error in Stollnitz, et al., section A.5.
Equation A.3 should read:

MV =VA

Subdivision curves

Idea:

+ repeatedly refine the control polygon

P'—>P* P —...

¢ curve is the limit of an infinite process

Q=Ilim P’
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Chaikin’s algorithm

Chakin introduced the following “corner-cutting”
schemein 1974:

+ Start with a piecewise linear curve

+ Insert new vertices at the midpoints (the
splitting step)

+ Average each vertex with the “next” (clockwise)
neighbor (the averaging step)

* Go to the splitting step

Old vertex New vertex

1. Split 2. Average

3. Split 4. Average




Averaging masks

The limit curve is a quadratic B-spline!
Instead of averaging with the nearest neighbor, we
can generalize by applying an averaging mask
during the averaging step:

r=0..,r,hn,...)

In the case of Chaikin's algorithm:

r=

Lane-Riesenfeld algorithm (1980)

Use averaging masks from Pascal’s triangle:

(-

Gives B-splines of degree n+1.

n=0:

n=2:

Subdivide ad nauseum?

After each split-average step, we are closer to the
limit curve.

How many steps until we reach the final (limit)
position?

Can we push a vertex to its limit position without
infinite subdivision? Yes!

Local subdivision matrix

Consider the cubic B-spline subdivision mask:

%(1 2 )

Now consider what happens during splitting and averaging

in a small neighborhood:

ct c=c? c?
Split 1% ¢ Average 15 bci !
— R R
L R 1° R 0 [

RO

We can write equations that relate points at one
subdivision level to points at the previous:




Local subdivision matrix

We can write this as a recurrence relation in matrix
form:
(U 1[4 4 0\(Lj_1\
c/ =§L1 6 1J ¢/
Ri 0 4 4)| g
Qf =SQj_1

Where the L, R, C's are (for convenience) row vectors
and S is the local subdivision matrix.

We can think about the behavior of each coordinate
independently. For example, the x-coordinate:

(XZ\ (4 4 0\()([_1\
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xt =§L 6 1J xé1
x 0 4 4
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X/ =sx/?

Local subdivision matrix, cont’d

Tracking just the x components through subdivision:

X' =sx/"'=s.sx/?2=5.5.5x/ 3 =...=s/x°
The limit position of the s is then:

X~ = lims/x°

J=ee

OK, so how do we apply a matrix an infinite number
of times??
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Eigenvectors and eigenvalues

To solve this problem, we need to look at the
eigenvectors and eigenvalues of S. First, a review...

Let v be a vector such that:
Sv=Av

We say that v is an eigenvector with eigenvalue 4.

An nxn matrix can have n eigenvalues and
eigenvectors:

Sv,=4v,

Sv,=1,v,

If the eigenvectors are linearly independent (which
means that S is non-defective), then they form a basis,
and we can re-write X in terms of the eigenvectors:

X= ZG,.V,

i

To infinity, but not beyond...

Now let’s apply the matrix to the vector X:
n n n
X'=SX"=S> av,=> asv,=) aiv,
Applying itj times:
. ..n n . n .
X =sIx=8'Yav;=> asv,=> atlv,

Let’s assume the eigenvalues are non-negative and
sorted so that:

A>A4>2-24,20
Now let j go to infinity:
n
o s 1 0_ : ]
X —jlgrlSX —}mezi:aiﬂivi
If X, > 1, then:

If A, < 1, then:

If A, =1, then:




Evaluation masks

What are the eigenvalues and eigenvectors of our
cubic B-spline subdivision matrix?

A =1 /12=% /13=%
(M =) (2)

V= 1J v2=LOJ v3=L—1
1 1 2

We're OK!

But where did the x-coordinates end up?

What about the y-coordinates?

Evaluation masks, cont'd

To finish up, we need to compute a,. First, we can
reorganize the expansion of X into the eigenbasis:

0 _ — —
X =av,+a,v,+---+a,v, =\v, v, - V =VA

A=VX°
a u
.
a, u; : X°
a, u

Now we can compute the limit position of the x-coordinate:

=3

x. =a,=u] X°

We call u, the evaluation mask.
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Evaluation masks, cont’'d Left eigenvectors
Note that we need not start with the 0t level control What are these u-vectors? Consider the eigenvector relation:
points and push them to the limit.
Sv, = 4v,
If we subdivide and average the control polygon j times,
we can push the vertices of the refined polygon to the We can re-write this as a matrix:
limit as well:
o _goyl _ gyl xJ
X =5TX=u X Slv, v, v,]=[4v, 4v, Av,]
The same result obtains for the y-coordinate: /11 0 0
ooyl _yTy) Slv, v, v,]=[v, v, v,JJO0 4, ©
y = = u1
0 0 A
SV=VA
where V is the concatenation of the eigenvectors into a
matrix and A is a diagonal matrix filled with the eigenvalues
of S.
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Left eigenvectors (cont’d)

Now lets multiply both sides by V! from the left and right
and then simplify:

V(SV)V' =V (VA)V'
V'S=AV"
US=AU

If we “de-construct” this relation, we get:

US=AU

I T4 0 oju]
u (S={0 A4, 0 ||u]
u;| |0 0 Au
u | A

ul [S=| Au]
| A

Thus, we find that the u-vectors obey the relation:
us=Au’

These are the “left eigenvectors” of S. (Alternatively, they
are the eigenvectors of ST.)

Recipe for subdivision curves

The evaluation mask for the cubic B-spline is:

(1 41

Now we can cook up a simple procedure for creating
subdivision curves:

¢ Subdivide (split+average) the control polygon a
few times. Use the averaging mask.

¢ Push the resulting points to the limit positions.
Use the evaluation mask.
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Tangent analysis

What is the tangent to the cubic B-spline curve?

First, let's consider how we represent the x and y
coordinate neighborhoods:

X°=av,+a,v, +a,v,
Y°=byv, +b,v, +b,v,
We can view the point neighborhoods then as:
Q° =[X° Y°]: vila, bl+v,[a, b]+v,[a, b]
After j subdivisions, we would get:
Q=9 {v1 [a, b]+v,[a, b,]+v,[a, b3]}
=Av[a, b+ Av,[a, b]+Av,[a, b,]
We can write this more explicitly as:

L ) v1,L . VZ,L ) V3,L
Cl=M|vic|la, b]+|vye|a, b|+A|vsc ([a; bs]
R v

1R VZ,R V3,R

Tangent analysis (cont’d)

The tangent to the curve is along the direction:

t=lim(R' =)

joeo
What's wrong with this definition?
Instead, we'll find the normalized tangent direction :

Ri_cf

LS |

Now, let’s look at the “right” and “center” points in
isolation:

Ri=2vpla, b+ Mv,.la, b,|+Av,q[a;, b,]
C=Av,c|a bl+Av,c[a, b,]+MUv, [a, bs]

The difference between these is:

R-C=A(vip—vic)la, b]+

ié(vm—vzyc)[az bz]wtﬂp;'(vm—v&c)[a3 b,]
=/1§(v2,,?—v2lc)[a2 b2]+/1§'(v3l,e—v3yc)[a3 b,]
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The tangent mask

And now computing the tangent:

RI-C! /7'(Vzn Vz,c)[az bz]
PR v vile. b

(Vz,R_Vz,c)[az b ]+Lﬂ J Vip— 3(‘)[0 bs]
= lim

(Vor—Vvac)la, b2]+L/TzJ (Vip—Vvsc)las b,

(VZR Vzc) ) b]
(VZR_VZC a, b]H

[a, b,]
e o]
[u X° uy°]
x|

u;Q°
vl

Thus, we can compute the tangent using the second left
eigenvector! This analysis holds for general subdivision
curves and gives us the tangent mask.
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DLG interpolating scheme (1987)

Slight modification to subdivision algorithm:

+ splitting step introduces midpoints
* averaging step only changes midpoints

For DLG (Dyn-Levin-Gregory), use:

1
r=—(-2,510,5,-2
T6¢ )
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Since we are only changing the midpoints, the points
after the averaging step do not move.
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