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ABSTRACT

Problems of signal processing arise in image
synthesis because of transformations between
continuous and discrete representations of 2D
images. Aliasing introduced by sampling has
received much attention in graphics, but recon-
dtruction of samples into a continuous
representation can also cause diasing as well
as other defects in image qudity. The prob-
lem of designing a filter for use on images is
discussed, and a new family of piecewise
cubic filters are investigated as a practical
demonstration. Two interesting cubic filters
are found, one having good antialiasing pro-
perties and the other having good image-
quality properties. It is also shown that recon-
struction using derivative as well as amplitude
values can greatly reduce aiasing.

CR Categories and Subject Descriptions: 133 [ Computer Graphics [:
Picture/lmage Generation; 14.1 [ Image Processing I: Digitization

General Terms. Algorithms

Additional Keywords and Phrases: Antialiasing, Cubic Filters, Filters,
Derivative Recongtruction, Reconstruction, Sampling

1. Introduction

The issues of signd processing arise in image synthesis because of
transformation between continuous and discrete representations  of
images. A continuous signal is converted to a discrete one by sampling,
and according to the sampling theorem [SHA49], dl the information in
the continuous signal is preserved in the samples if they are evenly
spaced and the frequency of sampling is twice that of the highest fre-
quency contained in the signal. A discrete signal can be converted to a
continuous one by interpolating between samples, a process referred to in
the signal-processing literature as reconstruction.
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Many conversions between continuous and discrete representations  may
occur in the course of generating an image. For example when ray trac-
ing a texture-mapped surface, a photograph may be sampled by a digi-
tizer to define the texture, then the texture samples are interpolated and
resampled when a ray strikes the textured surface, the ray samples are
interpolated and resampled to generate pixel values, and the pixels are
interpolated by a display and finally resampled by retinal cells when the
image is viewed. Resampling may be more explicit, as in enlarging or
reducing a digital image or warping an image (eg. with Camull and
Smith's algorithm [CAT80]). Each of these conversions can introduce
conspicuous errors into an image.

Errors introduced by sampling (eg., aliasing) have received considerable
attention in the graphics community since Crow identified this as the
cause of certain unwanted artifacts in synthetic images [CRO77]. Alias-
ing in images was discussed in the classic 1934 paper by Mertz and Gray
[MER34]. Their discussion contains a description of artifacts well-
known to graphics researchers today and shows that the condition for
preventing diasing was known, as a rule of thumb, long before
Shannon's proof of the sampling theorem:

The interference usually manifests itself in the form of serra-
tions on diagonal lines and occasiond moire effects in the
received picture. Confusion in the signal may be practically
eliminated by using an aperture of such anature that it cuts
off al [Fourier] components with n numbers greater than
N/2 [half the scanning rate] ...

By comparison, the problems introduced by reconstruction have been
somewhat neglected in the graphics literature. Reconstruction can be
responsible for aliasing and other types of distortion that mar the subjec-
tive quality of an image. This paper will focus on the effects of recon-
struction and how to design filters for graphics applications.

2. Aliasing Caused by Reconstruction

Aliasing in synthetic images is aserious problem and still not completely
solved.  In other digital-signal-processing applications, diasing is elim-
inated by prefiltering signals before sampling, as illustrated in Figure 1.
Note that it is the prefiltered signal that is reconstructed in this case.

original pre- discrete | post- reconstructed
signal filter signal filter signal

sampling
pulses

Figure 1. Sampling and Reconstruction

While prefiltering is the classic solution to aliasing problems, there is a
special  problem encountered in computer graphics. Many synthetic
images originate from what we will call procedural signals, in which the
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signd is only implicitly defined by an agorithm for computing point
samples. Operations that require an explicit representation of the signal
cannot be performed, and in particular, prefiltering is impractical. This
difficulty is unique to computer graphics, and ray tracing is the clearest
example of it [WHI8Q].

To explain the role that reconstruction plays in aliasing, it will be helpful
to review briefly the theory of sampling and define the operations of
sampling and reconstruction more precisely. In one dimension, a signal
can be represented by a continuous function f(x). Producing a discrete
signa by sampling is equivalent to multiplying by an infinite train of
impulses known as acomb function:

f.x) = f(x)-comb(x) W

where

comb (x) = i d(x—n) (1b)

Unit spacing between samples is assumed in equation (1b), and &) is
the Dirac delta function. In this case, the sampling theorem states that
f(x) can be reconstructed exactly from its samples if it contains no fre-
quencies greater than 05 cycles per sample. This critical frequency is
called the Nyquist frequency.

Reconstruction is accomplished by convolving (indicated by *) the
discrete signal with areconstruction filter kernel, k(x):

5(x) = £y * k(x) (2)
= [ f.) - k(x - u)du 2b)
= 3 fim)kx—n) | 20

n=—o

Except in the mathematically ideal case, some error is introduced in the
process of sampling and reconstruction, and f(x) will be somewhat dif-
ferent from f,(x). To andyze this error, it is useful to view the problem
inthe frequency domain. The Fourier transform of the signal is its spec-
trum F(v), and the Fourier transform of the filter is its frequency
response K(v). Since multiplication in the spatial domain is equivalent
to convolution in the frequency domain (and vice versa), sampling can
be described by:

F,(v) = F(v)* Comb(v) 3)
and reconstruction by: _
F(v)=F,(v)-K(v) )

The Fourier transform of a comb function is also a comb function (with
reciprocal spacing between impulses).

Figure 2. Sampling and Reconstruction in Frequency Domain

Figure 2 illustrates the consequences of the convolution in equation (3).
The spectrum of a sampled signd F,(v) is the sum of an infinite
sequence of shifted replices of the origina signal's spectrum, each
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centered a the location of an impulse in the comb. Equation (4) states
that, in the frequency domain, reconstruction can be interpreted as the
multiplication by K(v) which is intended to eliminate al the extraneous
replicas of the signal's spectrum and keep the original base-band cen-
tered at the origin. K(v) isindicated by the dashed curve in Figure 2.

However, Figure 2 also demonstrates a problem. The replicas of the sig-
nal spectrum overlap, and the reconstruction filter can not isolate a pure
version of the base-band signal. When part of the energy in a replica of
the spectrum lesks into the reconstructed signal, aliasing results. If the
bandwidth of the signal were narrower or the sampling rate higher, the
copies would not overlap, and exact reconstruction would be possible,

Even if the replicated spectra do not overlap, aiasing can result from
poor reconstruction, asillustrated in Figure 3. When aliasing isa conse-
quence of undersampling (or lack of prefiltering), it is referred to as
prealiasing, and when it results from poor reconsttuction, it is caled
postaliasing.

Figure 3. Postaliasing Resulting from Poor Reconstruction Filter

Figure 4 shows an extreme example of aliasingzin animage. In this fig-

ure, the two-dimensional signal, f(x,y) = sin(x +3;),Was sampled on a
128 x 128 pixel grid. Then, these samples were reconstructed with a
cubic filter (to be described later in the paper) and resampled to 512 x
512 pixels.

The rings on the left side of the image are part of the actua signal, but
the rings on the right side are Maire' patterns due to prediasing. In the
center of the image is a fainter set of concentric rings resulting from pos-
taliasing. Postaliasing occurred when the discrete image of 128 x 128
pixels was enlarged to 512 x 512 pixels by resampling. Note that this
conspicuous pogtaliasing pattern results from "beating” between the sig-
nd and its alias. This can also be understood from Figure 3, where it
can be seen that at the Nyquist frequency (indicated by vy) the signdl's
spectrum and its nearest replica come close together. Power in the spec-
trum very near the Nyquist frequency is thus the cause of the most diffi-
cult type of aiasing to remove from an image. This problem has been
noted by other graphics researchers [CO087] and by Mertz et 4.
[MER34].

Using the same set of samples as in Figure 4, a much better reconstruc-
tion filter can be applied (a 30-unit-wide windowed sinc filter). Figure 5
demonstrates a dramatic reduction of the postaliasing pattern, but the
prediasing is unaffected. The spectrum of this reconstruction filter is
very close to the ideal step shape shown in Figures 2 and 3.

3. Other Image Defects Caused by Reconstruction

Notice in Figure 2, that a reconstruction filter K(v) has two tasks. First
it must remove the extraneous replicas of the signal spectrum (to prevent
aliasing). Second, it should pass the origina signal base band, but the
signal can be distorted if this is not done perfectly. This second type of
reconstruction error will be referred to as base-band attenuation.

From the previous section, one might assume that the literature of signal
processing provides a complete solution to the reconstruction problem in
graphics, however, there is a serious difficulty with the idea sinc filter
that is not obvious from studying its frequency response. Figure 6
shows a simple figure reconstructed with the same filter used in Figure
5. The rippling pattern radiating from the edges is called ringing. Ring-
ing is strongly suggested by the form of the impulse response of the sinc
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filter, as shown in Figure 7:

0.5 —

Figure 7. Impulse Response of Ideal Sinc Filter

Classical digita filter design places aheavy emphasis on the frequency
response of a filter. That works well in the audio domain, but when con-
sidering the appearance of images, it is important to also pay attention to
the shape of the impulse response.

The response of human viewers to various spatial effects of filters is not
yet a well-understood science and is largely subjective in nature. Filters
that have some aliasing problems or certain types of base-band atenua-
tion may turn out to give visually-pleasing results. Schreiber and Troxel
have discussed the spatial effects of reconstruction filters [SCH85], and
they mention some of the important defects that can occur when judging
the quality of an image subjectively: sample-frequency ripple, anisotro-
piceffects, ringing, blurring,and aliasing. Each of these effects will be
considered in detail in the following section.

Unfortunately, it is often necessary to trade off one type of distortion for
another, and the design of a single filter perfect for al applications is
amost certainly impossible.  As Figure 6 illustrated, perfect antiaiasing
resulted in the serious defect of ringing. However, Brown redlized that a
moderate amount of ringing can improve the subjective quaelity of an
image by enhancing the appearance of sharpness [BRO69]. He found
that a single transient lobe of ringing was effective a sharpening, but
multiple transients (as in Figure 6) always degrade image quality.

Many of the concepts presented so far have been illustrated in one
dimension for simplicity. However, image reconstruction takes place in
two dimensions and involves the convolution of a 2D lattice of samples
with a filter k(x,y). In this paper, we will consider only separable
filters, where the samples are convolved with the product k(X)k(y).
Separable filters are computationally more efficient than nonseparable
because the filtering operation can be performed in separate passes verti-
cally and horizontaly. If the filter kernel is N samples wide, the recon-
struction can be performed with O(Nz) multiplications for the general
filter k(x,y) but with O(N) if the filter is separable.

4, Piecewise Cubic Reconstruction Filters

Rather than discuss the issues of filter design abstractly, this paper will
apply them to the study of a family of filters defined by piecewise cubic
polynomials. Cubic filters are sufficiently complex to have a broad
range of behaviors, but they are smple enough to be computationally
attractive. Hou and Andrews have studied the filtering properties of the
cubic B-spline [HOU78], and two studies have been made of the one-
parameter family of cardinal cubic splines [KEY81,PARS3].

The general form for a symmetric cubic filter is:
PlxP+QIx12+RIxI+S if Ixl<1

k()= {TIxP+UIx12+VIxI+W if1SIxl<2 6)
0 otherwise

Several obvious constraints can be placed on this function to reduce the

number of free parameters. First, the filter should be smooth in the
sense that its value and first derivative are continuous everywhere.
Discontinuities in k(X) will lead to high-frequency leskage in the fre-
quency response of the filter which can alow dliasing. In addition, the
problem of sample-frequency ripple can be designed out of the filter by
requiring (for al x):

T k(x=n)=1 @

This means that if al the samples are a constant value, the reconstruction
will be a flat constant signal. Figure 8 demonstrates this defect by using
an unnormalized Gaussian filter to reconstruct a 512 x 512 image from
64 x 64 samples. In the frequency domain, sample ripple can be viewed
as an dlias of the image's DC component. It can be shown that the con-
dition given by equation (7) means that the frequency response of these
cubic filters will be zero at al integer multiples of the sampling fre-
quency except zero, eliminating al extraneous replicas of the DC com-
ponent.

With these constraints, the number of free parameters are reduced from
eight to two, resulting in the following family of cubic filters:

(12-98-6CHIx1* + if Ixl<1
(-18+12B +6C)IxI%+(6-2B)
k(x):—l- (-B—6C)x13 +(6B+30C)Ix12+ if1<1xl<2 8)
(=12B - 48C)Ix1 +(8B +24C)
0 otherwise

Some values of (B, C) correspond to well-known cubic splines. (1,0) is
the cubic B-spline, (0, C) is the one-parameter family of cardinal cubics
with (0, 0.5) being the Catmull-Rom spline, and (B, 0) are Duff's ten-
sioned B-splines [DUF86].

In two or more dimensions, visible artifacts can be caused by angle-
dependent behavior or anisotropiceffects. Figure 9 illustrates this prob-
lem by reconstructing with the separable filter k(x)k(y) using parameter
values of (0,0). Even though sample-frequency ripple has been designed
out of k(x), intwo dimensions the pixel structure is highly conspicuous
because the impulse response and the sampling lattice are not radialy
symmetric.

The phenomenon of ringing has aready been seen in Figure 6. Filters
in the cubic filter family can also exhibit this problem as seen in Figure
10, where parameter values of (0,1) were used. Ringing results when
k(x) has negative side lobes, and athough some ringing can enhance
sharpness, afilter that becomes negative is problematic. In Figure 10, a
typical problem is seen where portions of the image near an edge have
become negative and have been clamped to zero. This results in pro-
nounced black spots (eg. a the top of the statue's head). Similar
clamping occurs to white, but is less noticeable because of the eye's non-
linear response to contrast. Schreiber and Troxel have suggested that
subjectively even sharpening can only be produced by introducing ring-
ing transients in a suitably nonlinear fashion [SCH85]. These conspicu-
ous clamping effects could aso be eliminated by reducing the dynamic
range of the image or raising the DC level of the image.

Parameter values of (3/2, -1/4) result in an image that is unnecessarily

blurry, as seen in Figure 11. The cubic B-spline aso suffers from this
problem. In viewing many reconstructions with filters in this family,
ringing, anisotropy, and blurring are the dominant behaviors, and in a
small region of the parameter space, a satisfactory compromise seems to

exist which is seen in Figure 12, using parameter values of (1/3, 1/3).

This is quite good, considering that the image is being magnified from
64 x 64 pixels. There is some degree of sharpening, and almost no visi-

ble evidence of the sampling lattice.

To get a better idea of which regions of the parameter space yield which
type of behavior, a Smple subjective test was designed. On a neutral
background, four images were displayed typifying the effects of ringing,
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blurring, anisotropy, and an example of the most satisfactory behavior.
In the center of the display, images reconstructed from filters with ran-
dom values of (B, C) were displayed, and the test subject was asked to
choose which of the four behaviors it exemplified. Nine expert
observers (researchers working in graphics or image processing) took
part and over 500 samples were taken. It would not be credible to sug-
gest that a single ideal parameter pair can be deduced from subjective
testing.  The motivation for this experiment was simply to draw approxi-
mate boundaries between regions of differing behavior as shown in Fig-
ure 13. The test subjects were quite consistent with one another in their
judgements.

1
08 . Blr
Anisotropy
0.6
B
parameter
0.4 —
Satisfactory
0.2
.
Anisotropy .
0 T | B
0 0.2 04 0.6 0.8 1

C parameter

Figure 13. Regions of Dominant Subjective Behavior

To help choose a good filter from the two-parameter space, some quanti-
tative analysis can be done to remove one more degree of freedom.
Keys and Park et a. studied the cardina cubic splines because these
cubics exactly interpolate a the sample postions [KEY81,PARS3].
Using standard numerical analysis, Keys concluded that the Catmull-
Rom spline was best. Park et al. reached the same conclusion using an
equivalent analysis in the frequency domain. Figure 14 illustrates this
technique:

Figure 14. f(x) and f,(x)

As the sample spacing h diminishes, the function and its reconstruction
become closer. The difference f(x)-f,(X) can be expanded into apower
series in h to study how parameters affect various orders of behavior.
Details of this type of anaysis can be found in Keys paper, and when
applied to the two-parameter family, the following is obtained:

fO-£)=QC+B-1Dhf r(x) + Oh? ©
r(x) is a polynomia factor. When 2C+B = | (indicated by dotted line

224

in Figure 13), quadratic convergence of fit is achieved. This line con-
tains the cubic B-spline and the Catmull-Rom spline (which actually has
cubic convergence). Within the interval of B = 5/3to B = 0, good sub-
jective behavior is found with a simple trade-off between blurring and
ringing. Outside this interval, k(X) becomes bimodal or exhibits extreme
ringing. The filter (3, 1/3) used to generate Figure 12 is recommended
by the authors, but other observers may prefer more or less ringing.

5. Postdliasing Revisited

A systematic consideration of subjective appearance along with quantita-
tive analysis has yielded an excellent piecewise cubic filter. However,
the issue of postaliasing, defined in section 2, has been ignored. In fact
the (U3, 1/3) filter has only fair antialiasing properties and was used to
generate Figure 4. Postaliasing is usualy not strong enough to cause
visible "jaggies’ on edges unless a very poor filter is used (eg., a box
filter); however, an image with periodic patterns can have conspicuous
postalias Moire' effects unless careful precautions are taken. Synthetic
images that contain brick walls, ocean waves, or the ubiquitous checker-
board pattern are examples of images that might have this difficulty.
There are several approaches to fixing this problem.

If the signal is bandlimited and samples carry information about the
derivative as well as about signal amplitude, a better job of reconstruc-
tion can be done [PET64]. Given samples (at unit spacing) of a signal
and of its derivative, areconstruction can be done in the following form:

f)= i [ﬁ,g(x—n)+j’,,h(x—n):| (10)

LT

Inan extension of the sampling theorem, if the signal contains no energy
above the sampling frequency (twice the allowed bandwidth of sampling
without derivatives), then it can be perfectly reconstructed by the filter
kernels:

2
in?
hG) = Sl;:zm (11b)
X

This is analogous to the ideal sinc recongtruction formula in the standard
case where no derivative information is present. A common approxima-
tion to these ideal reconstruction formulae is Hermite cubic interpolation:

20x13=31x12 41 if 1x1<1 12
g = 0 otherwise a2
x3=2clxl+x if IxiI<1 25
h(x)=1¢ otherwise (120)

Figure 15 shows the dliasing test pattern (still starting with 128 x 128
samples) reconstructed with the Hermite cubic postfilter. The effect is
dramatic when compared to Figure 4. The postaliasing artifact in the
middle of the image is nearly gone, and the prealiasing pattern on the
right is less intense.

The theory of derivative reconstructionmay have some practical value in
computer graphics. For example, it may be possible to extend Whitted's
ray-tracing shading model [WH80] to generate derivatives with respect
to the screen coordinates. This is not an easy problem, but we have
demonstrated the feasibility of this extension by deriving the formulae
for Lambert and Phong shading on quadric surfaces. It is possible that
the density of rays used to reconstruct an image could be reduced in this
manner by gathering more useful information from each visible surface
calculation.

A second approach to improving postaliasing properties is suggested by
the success of stochastic sampling on the prediasing problem
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[COO86,DIP85MIT87].  However, preliminary experiments conducted
by the authors with stochastic-phase reconstruction have yielded very
poor results. The amount of noise needed to obscure postaliasing seri-
ously degraded image quality.

Finally, it was observed in section 2 that signal energy very near the
Nyquist frequency is most responsible for conspicuous Moire patterns. It
is possible to cut out this component by notch-filter reconstruction. The
frequency response of the two-parameter cubic filter in equation (8) is:

KW) = 3(;\’3;5 [sincz(v) —sinc(ZV)] (13)

+

(m(';z [—3sincz(2v) +2sinc(2v) +sinc (4v)]

+ Bsinc®(v)

This function goes to zero a v = 12 when B=32. In fact, the fre-
quency response is zero a al integer and half-integer multiples of the
sampling rate except zero. The filter (3/2, -1/4) is quadratically conver-
gent, and the result of reconstruction with it can be seen in Figure 16, in
which the postaliasing artifact is amost completely eiminated. Unfor-
tunately, this filter is quite blurry as was seen in Figure 11 The
behavior of this notch filter can be seen in its frequency response in Fig-
ure 17 compared with the cubic B-spline filter (1, 0) in Figure 18. The
log magnitudes of the frequency responses are plotted below:

0.1
0.01 |
0.001 -] m /\
00001 -L_ : :
0 1 2 3

v

Figure 17. Frequency Response of Cubic Notch Filter

0.1
0.01
0.001 | /\
0.0001 L | : N
0 1 2

v

Figure 18. Frequency Response of Cubic B-Spline Filter

6. Conclusions

Designing reconstruction filters for computer graphics applications
requires a balanced analysis of formal quantitative properties and subjec-
tive image quality. There are many trade-offs, and it may be impossible
to find a filter that yields good image quality and has good antialiasing
properties.

A new family of cubic filters has been analyzed, and two interesting
filters have been found. The (1/3, 1/3) filter yields excellent image qual-
ity, and the notch filter (3/2, -1/4) strongly suppresses postaliasing pat-
terns.

If derivative values can be generated by a procedural signal, an image
with less aiasing is possible by reconstruction with Hermite interpolation
or some other suitable filter.

More work remains to be done. While the authors do not believe simple
filters will be found that improve much on the cubic filters derived here,
there are other avenues for progress. Adaptive filters might alow good
image quality with strong antidiasing only where it is needed in problem
aress. The effects of the reconstruction in the display and eye might be
alowed for given models of the visual system [NET8S].

Finally, the problem of reconstruction from nonuniform sampling is not
entirely solved. Reasonable filters have been proposed [MIT87], but
more analysis could be done; "ldeal" nonuniform reconstruction filters
are known which are analogous to the sinc filter used with uniform sam-
ples. A greater challenge will be to understand the subjective issues
involved in designing filters that are well suited to computer graphics.
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Figure 6. Ringing Caused By Sinc Postfilter Figure 9. Anisotropic Artifacts

Figure 8. Sample-Frequency Ripple Figure 10. Excessive Ringing and Clamping Artifacts
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Figure 11. Excessive Blurring Figure 15. Using Derivative Reconstruction

Figure 12. Best-Looking Cubic Reconstruction Figure 16. Using Notch-Filter Reconstruction
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