
1

Hierarchical Modeling

Brian Curless

CSE 557

Fall 2013

2

Reading

Required:

� Angel, sections 8.1 – 8.6, 8.8 (online handout)

Optional:

� OpenGL Programming Guide, chapter 3

3

Symbols and instances

Most graphics APIs support a few geometric

primitives:

� spheres

� cubes

� cylinders

These symbols are instanced using an instance

transformation.

Q: What is the matrix for the instance transformation

above?

4

3D Example: A robot arm

Consider this robot arm with 3 degrees of freedom:

� Base rotates about its vertical axis by θ
� Upper arm rotates in its xy-plane by φ
� Lower arm rotates in its xy-plane by ψ

(Note that the angles are set to zero in the figure; i.e.,

the parts are shown in their “default” positions.)

Q: What matrix do we use to transform the base?

Q: What matrix for the upper arm?

Q: What matrix for the lower arm?

[Angel, 2011]

h1

h2
h3

Base

Upper arm

Lower arm

θ φ ψ

5

An alternative interpretation is that we are taking the

original coordinate frames…

…and translating and rotating them into place:

3D Example: A robot arm

h1

h2
h3

Base

Upper arm

Lower arm

θ φ ψ

yUA
xLAyLA

zLA

xUA

zUA

xB

yB

zB

6

From parts to model to viewer

θ φ ψ

7

Robot arm implementation

The robot arm can be displayed by keeping a global matrix
and computing it at each step:

Matrix M_model;

Matrix M_view;

main()

{

. . .

M_view = compute_view_transform();

robot_arm();

. . .

}

robot_arm()

{

M_model = M_view*R_y(theta);

base();

M_model = M_View*R_y(theta)*T(0,h1,0)*R_z(phi);

upper_arm();

M_model = M_view*R_y(theta)*T(0,h1,0)

*R_z(phi)*T(0,h2,0)*R_z(psi);

lower_arm();

}

Do the matrix computations seem wasteful?

8

Instead of recalculating the global matrix each time, we can
just update it in place by concatenating matrices on the right:

Matrix M_modelview;

main()

{

. . .

M_modelview = compute_view_transform();

robot_arm();

. . .

}

robot_arm()

{

M_model *= R_y(theta);

base();

M_model *= T(0,h1,0)*R_z(phi);

upper_arm();

M_model *= T(0,h2,0)*R_z(psi);

lower_arm();

}

Robot arm implementation, better

9

OpenGL maintains a global state matrix called the

model-view matrix, which is updated by

concatenating matrices on the right.

main()

{

. . .

glMatrixMode(GL_MODELVIEW);

Matrix M = compute_view_xform();

glLoadMatrixf(M);

robot_arm();

. . .

}

robot_arm()

{

glRotatef(theta, 0.0, 1.0, 0.0);

base();

glTranslatef(0.0, h1, 0.0);

glRotatef(phi, 0.0, 0.0, 1.0);

lower_arm();

glTranslatef(0.0, h2, 0.0);

glRotatef(psi, 0.0, 0.0, 1.0);

upper_arm();

}

Robot arm implementation, OpenGL

10

Hierarchical modeling

Hierarchical models can be composed of instances

using trees or DAGs:

� edges contain geometric transformations

� nodes contain geometry (and possibly drawing

attributes)

How might we

draw the tree for

the robot arm?

11

A complex example: human figure

Q: What’s the most sensible way to traverse this tree?

12

Human figure implementation, OpenGL

figure()

{

torso();

glPushMatrix();

glTranslate(...);

glRotate(...);

head();

glPopMatrix();

glPushMatrix();

glTranslate(...);

glRotate(...);

left_upper_arm();

glPushMatrix();

glTranslate(...);

glRotate(...);

left_lower_arm();

glPopMatrix();

glPopMatrix();

. . .

}

13

Animation

The above examples are called articulated models:

� rigid parts

� connected by joints

They can be animated by specifying the joint angles

(or other display parameters) as functions of time.

14

Key-frame animation

The most common method for character animation in

production is key-frame animation.

� Each joint specified at various key frames (not

necessarily the same as other joints)

� System does interpolation or in-betweening

Doing this well requires:

� A way of smoothly interpolating key frames:

splines

� A good interactive system

� A lot of skill on the part of the animator

