Beyond Points and Springs

- You can make just about anything out of point masses and springs, in principle
- In practice, you can make anything you want as long as it's jello
- Constraints will buy us:
- Rigid links instead of goopy springs
- Ways to make interesting contraptions

The basic trick ($\mathbf{f}=\mathbf{m v}$ version)

- 1st order world.
- Legal velocity: tangent to circle ($\mathbf{N} \cdot \mathrm{v}=\mathbf{0}$)
- Project applied force f onto tangent: $\mathbf{f}^{\prime}=\mathbf{f}+\mathbf{f}_{\mathrm{c}}$
- Added normal-direction force f_{c} : constraint force
- No tug-of-war, no stiffness
$\mathbf{f}_{\mathbf{c}}=-\frac{\mathbf{f} \cdot \mathbf{N}}{\mathbf{N} \cdot \mathbf{N}} \mathbf{N} \quad \mathbf{f}^{\prime}=\mathbf{f}+\mathbf{f}_{\mathbf{c}}$
$\mathbf{f}=\mathbf{m a} \quad$ - Same idea, but...
- Curvature (κ) has to match.
- κ depends on both a and v: - the faster you're going, the faster you have to turn
- Calculate f_{c} to yield a legal combination of a and v
- Not as simple!

Now for the Algebra ...

- Fortunately, there's a general recipe for calculating the constraint force
- First, a single constrained particle
- Then, generalize to constrained particle systems

Representing Constraints

I. Implicit:
$\mathrm{C}(\mathbf{x})=|\mathbf{x}|-\mathrm{r}=0$
Th. Parametric:
$\mathbf{x = r} \cos \theta, \sin \theta]$

Maintaining Constraints Differentially

- Start with legal position and velocity.
- Use constraint forces to ensure legal curvature.

```
C=0 legal position
E}=0\mathrm{ legal velocity
c}=0\mathrm{ legal curvature
```


Constraint Gradient

$$
\begin{aligned}
& \text { Implicit: } \\
& \mathrm{C}(\mathbf{x})=|\mathbf{x}|-\mathrm{r}=0
\end{aligned}
$$

Differentiating \mathbf{C} gives a normal vector.
This is the direction our constraint force will point in.

Example: Point-on-circle	Drift and Feedback
$\begin{array}{ll} \mathrm{C}=\|\mathbf{x}\|-\mathrm{r} \\ \mathbf{N}=\frac{\partial \mathrm{C}}{\partial \mathbf{x}}=\frac{\mathbf{x}}{\|\mathbf{x}\|} \longleftarrow & \begin{array}{l} \text { Write down the constraint } \\ \text { equation. } \end{array} \\ \mathbf{N}=\frac{\partial^{2} \mathrm{C}}{\partial \mathbf{x} \partial \mathrm{t}}=\frac{1}{\|\mathbf{x}\|}\left[\dot{\mathbf{x}}-\frac{\mathbf{x} \cdot \mathbf{x}}{\mathbf{x} \cdot \mathbf{x}} \mathbf{x}\right] \quad \begin{array}{l} \text { Take the derivatives. } \\ \text { Substitute into generic } \\ \text { template, simplify. } \end{array} \\ \lambda=-\mathrm{m} \frac{\mathbf{N} \cdot \mathbf{x}}{\mathbf{N} \cdot \mathbf{N}}-\frac{\mathbf{N} \cdot \mathbf{f}}{\mathbf{N} \cdot \mathbf{N}}=\left[\mathrm{m} \frac{(\mathbf{x} \cdot \mathbf{x})^{2}}{\mathbf{x} \cdot \mathbf{x}}-\mathrm{m}(\mathbf{x} \cdot \mathbf{x})-\mathbf{x} \cdot \mathbf{f}\right] \frac{1}{\|\mathbf{x}\|} \end{array}$	- In principle, clamping C at zero is enough - Two problems: - Constraints might not be met initially - Numerical errors can accumulate - A feedback term handles both problems: \qquad $C=-\alpha C-\beta C$, instead of $\mathrm{C}=0$

Tinkertoys

- Now we know how to simulate a bead on a wire.
- Next: a constrained particle system.
-E.g. constrain particle/particle distance to make rigid links.
- Same idea, but...

Constrained particle systems

- Particle system: a point in state space.
- Multiple constraints:
- each is a function $\mathrm{C}_{\mathrm{i}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots\right)$
- Legal state: $\mathrm{C}_{\mathrm{i}}=\mathbf{0}, \forall \mathrm{i}$.
- Simultaneous projection.
- Constraint force: linear combination of constraint gradients.
- Matrix equation.

How do you implement all this?

- We have a global matrix equation.
- We want to build models on the fly, just like masses and springs.
- Approach:
- Each constraint adds its own piece to the equation.

Matrix Block Structure

- Each constraint contributes one or more blocks to the matrix.
- Sparsity: many empty blocks.
- Modularity: let each constraint compute its own blocks.
- Constraint and particle indices determine block locations.

Constraint Force Eval

- After computing ordinary forces:
- Loop over constraints, assemble global matrices and vectors.
- Call matrix solver to get λ, multiply by J^{T} to get constraint force.
- Add constraint force to particle force accumulators.

Impress your Friends

- The requirement that constraints not add or remove energy is called the Principle of Virtual Work.
- The λ 's are called Lagrange Multipliers.
- The derivative matrix, J, is called the Jacobian Matrix.

General case

Lagrange dynamics:
$\mathbf{J}^{\mathbf{T}} \mathbf{M J u} \mathbf{+} \mathbf{J}^{\mathbf{T}} \mathbf{M} \mathbf{J u} \mathbf{-}-\mathbf{J}^{\mathrm{T}} \mathbf{Q}=\mathbf{0}$
where
$\mathbf{J}=\frac{\partial \mathbf{q}}{\partial \mathbf{u}}$

Not to be confused with:

$$
\begin{aligned}
{\left[\mathbf{J W J} \mathbf{J}^{T}\right] \lambda } & =-\mathbf{J q}-[\mathbf{J W}] \mathbf{Q} \\
& \text { where } \\
\mathbf{J} & =\frac{\partial \mathbf{C}}{\partial \mathbf{q}}
\end{aligned}
$$

Parametric Constraints: Summary

- Generalizations: f=ma, particle systems
- Like implicit case (see notes.)
- Big advantages:
- Fewer DOF's.
- Constraints are always met.
- Big disadvantages:
- Hard to formulate constraints.
- No easy way to combine constraints.
- Offical name: Lagrangian dynamics.

