

Now for the Algebra ...

- Fortunately, there's a general recipe for calculating the constraint force
- First, a single constrained particle
- Then, generalize to constrained particle systems

Tinkertoys

- Now we know how to simulate a bead on a wire.
- Next: a constrained particle system.
 - E.g. constrain particle/particle distance to make rigid links.
- Same idea, but...

Constrained particle systems

- Particle system: a point in state space.
- Multiple constraints:
 - each is a function $C_i(x_1,x_2,...)$
 - Legal state: $C_i = 0, \forall i$.
 - Simultaneous projection.
 - Constraint force: *linear combination* of constraint gradients.
- Matrix equation.

How do you implement all this?

- We have a global matrix equation.
- We want to build models on the fly, just like masses and springs.
- Approach:
 - Each constraint adds its own piece to the equation.

Matrix Block Structure

- Each constraint contributes one or more *blocks* to the matrix.
- Sparsity: many empty blocks.
- Modularity: let each constraint compute its own blocks.
- Constraint and particle indices determine block locations.

Impress your Friends

- The requirement that constraints not add or remove energy is called the *Principle of Virtual Work*.
- The λ 's are called *Lagrange Multipliers*.
- The derivative matrix, J, is called the *Jacobian Matrix*.

