

$$x(t+h) = x(t) + hf(x,t) + O(h^{2})$$

What do we need to do to get accuracy of O(h³)

The midpoint method

Also knows as second-order Runge-Kutta

$$k_{1} = hf(x_{0}, t_{0})$$
$$k_{2} = hf(x_{0} + \frac{k_{1}}{2}, t_{0} + \frac{h_{2}}{2})$$

 $x(t_0 + h) = x_0 + k_2 + O(h^3)$

a. Compute an Euler step $\Delta \mathbf{x} = \Delta t \mathbf{f}(\mathbf{x},t)$ b. Evaluate f at the midpoint $\mathbf{f}_{mid} = \mathbf{f}\left(\frac{\mathbf{x} + \Delta \mathbf{x}}{2}, \frac{t + \Delta t}{2}\right)$ c. Take a step using the midpoint value $\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \mathbf{f}_{mid}$

q-stage Runge-Kutta method

General form

$$x(t_{0} + h) = x(t_{0}) + h \sum_{i=1}^{q} w_{i}k_{i}$$
$$k_{i} = f\left(x_{0} + h \sum_{j=1}^{q} \beta_{ij}k_{j}\right)$$

Find the constants which ensure a given accuracy $O(h^n)$. What if β matrix is full?

	·		()rc	ler	V	s. S	Sta	ges	
order (p) min stage (q)	1 1	2 2	3	4	5 6	6 7	7 9	8	9 12≤q≤17	10 $13 \le q \le 17$
Nothing i	s k	nov	vn f	or o	rde	rs >	• 10			

Helpful hints

- Don't use Euler's method
- **Do** Use adaptive step size
- For stiff equations use implicit methods
 - -more on that later in the course

Modular Implementation

- Generic operations:
 - Get dim(x)
 - Get/set x and t
 - Deriv Eval at current (x,t)
- Write solvers in terms of these.
 - Re-usable solver code.
 - Simplifies model implementation.

