Simulation based methods

- Forward simulation [e.g. Baraff, Mirtich]
- Highly realistic
- Simulated character very hard to control
- Controllers [Raibert, Hodgins, Ngo, van de Pane]
- Fast motion generation once controllers are computed
- No set rules on controller generation

Spacetime constraints

- Animation is an optimal motion that

Simulation vs. Spacetime
Forward simulation

- initial value problem
- Provides both realism and control

Spacetime constraints

- two-point boundary problem
- muscle forces vary as functions through time

Spacetime particle

A particle with a jet engine

Equations of motion

- Particle's position as a function of time $x(t)$
- Particle's mass m
- Time-varying jet force $f(t)$
- Constant gravitational force $m g$
- Interpolate points at specific times
- Be fuel efficient

$$
m a f-m g=0
$$

Constraints

Fly from point a to point b in a fixed time
Mechanical constraints

Constraints imposed by the environment period $t_{l}-t_{0}$

- Forces which can act to satisfy the constraint

Jet engine "Muscle"

Force applied in arbitrary direction

Objective function

Minimize the rate of fuel consumption
Proportional to the force magnitude integral

$$
E=\int_{t_{0}}^{t}\|f(t)\|^{2} d t
$$

DOF representation

$$
\begin{aligned}
& x_{i}\left(c_{0}^{i}, \ldots, c_{n}^{i} ; t\right) \\
& f_{j}\left(c_{0}^{j}, \ldots, c_{n}^{j} ; t\right)
\end{aligned}
$$

Computing derivatives

Discretized samples use finite differences

Defined in arbitrary basis:

Constraints formulation

Constraint derivatives

- Newtonian constraint
$n_{i}=m \frac{x_{i+1}-2 x_{i}+x_{i-1}}{h^{2}}-f_{i}-m g=0 \quad 1<i<n$
- Boundary constraints

$2 m=\left\{\begin{array}{l}2 m / h^{2}, \quad i=j \\ \partial x=\end{array}\right.$
$\frac{\partial n_{i}}{\partial x_{j}}= \begin{cases}-m / h^{2}, & i \pm 1 \\ 0, & \text { otherwise }\end{cases}$
$\frac{\partial n_{i}}{\partial f_{i}}=\left\{\begin{array}{lc}1, & i=j \\ 0, & \text { otherwise. }\end{array}\right.$

Objective function derivatives

$$
\begin{aligned}
& \frac{\partial E}{\partial f_{j}}=2 f_{i} \\
& \frac{\partial^{2} E}{\partial f_{i} \partial f_{j}}=\left\{\begin{array}{cc}
2, & i=j \\
0, & \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

Spacetime optimization of complex structures
When optimizing a complex mechanical structure defined by its degrees of freedom $\left[q_{0}, q_{1}, \ldots, q_{n}\right]$
things get a lot more complicated

- Newtonian constraints become significantly more complex
- Need to convert forces into generalized forces

Deriving Newtonian constraints

Newtonian transformation hierarchies

Start with Lagrange's equations of motion

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \phi_{k}}\right)-\frac{\partial T}{\partial q}-Q=0
$$

Derive kinetic energy T and generalized forces Q

$$
\begin{aligned}
& \left.n_{j}=\sum_{i}\left[t r\left(\frac{\partial W_{i}}{\partial q_{j}} M_{i} W_{i}\right)_{i}\right)+m_{i} g \frac{\partial W_{i}}{\partial q_{j}} c_{i}\right]+ \\
& \sum_{k}\left[\frac{\partial F_{k} p_{k}}{\partial q_{j}}\right]+ \\
& \sum_{l}\left[q_{i}^{\lambda} \frac{\partial C_{m}}{\partial q_{j}}\right]
\end{aligned}
$$

Muscles

Muscle force proportional to the difference between the current and desired parameter value

Wavelet representation

- Fewer coefficients in flat regions
- Coefficients affects larger time intervals which leads to faster convergence

$$
f_{i}=k_{i}\left(q_{j}^{m}-q_{j}\right)
$$

Advantages

- Intuitive constraint specification
- Change the feel of motion by modifying the objective function
- Produces natural looking not just physically

Importance of a good initial position

- Does not converge if the starting point is too far from the solution
- Hard to find the constraint hyper-surface
- Explosion of the number of unknowns correct motion

Parameter and constraint explosion

- Parameter space is proportional to
- Number of DOFs
- Length of the optimized time period
- Constraint count is proportional to the time period
- Constraint complexity is proportional to the number of DOFs

