

<section-header><section-header><section-header><list-item><list-item><list-item><section-header>

Projection Models	
Orthographic	$\mathbf{M} = \begin{bmatrix} i_x & i_y & i_z & t_x \\ j_x & j_x & j_x & t_y \end{bmatrix} \vec{i} \text{ and } \vec{j} \text{ orthonormal}$
Weak Perspective	$\mathbf{M} = f \begin{bmatrix} i_x & i_y & i_z & t_x \\ j_x & j_x & j_x & t_y \end{bmatrix} \vec{i} \text{ and } \vec{j} \text{ orthonormal}$
Affine	$\mathbf{M} = \begin{bmatrix} * & * & * & * \\ * & * & * & * \end{bmatrix}$
Perspective	$\mathbf{M} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}$
Projective	$\mathbf{M} = \begin{bmatrix} * & * & * & * \\ * & * & * & * \\ * & * &$

Camera matrix calibration

Advantages:

- · very simple to formulate and solve
- can recover K [R | t] from M using RQ decomposition [Golub & VanLoan 96]

Disadvantages?

- · doesn't model radial distortion
- more unknowns than true degrees of freedom (sometimes)
- need a separate camera matrix for each new view

