Modeling aspects of 3d Photography

1. Outline

Given:

Dense triangular mesh M, possibly with colored vertices.

Will talk about:

- a. Mesh simplification and multiresolution analysis of meshes
- b. Mesh parameterization
- c. Conversion to other surface representations

5/9/2001

Motivation

- Compression
- Progressive transmission
- Level-of-detail control
- Multiresolution editing

Full resolution: 70K faces

(d) Original mesh (698 faces)

5/9/2001

(e) Surface editing at a coarse level

(f) Surface editing at a finer level

3

4

b. Mesh parameterization

Establish correspondence between points on original mesh and points on the meshes $M^{}_{0},\,M^{}_{1},\ldots$

Texture mapping --- can cover up lack of geometric detail

c. Conversion to other surface representations

Approximate mesh by subdivision surface, spline patches,.....

Mesh

Mesh (25K vertices)

B-spline surface 27 x 36 control points

Subdivision surface

5

Motivation

- · Parsimonious representation of smooth surfaces
- Use of models in CAD systems

5/9/2001

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

Definition of energy

$$E(V) = E_{dist}(V) + E_{spring}(V)$$
$$= \sum_{i=1}^{n} d^2(\underline{x}_i, \Phi_V(|K|))$$
$$+ \sum_{\{j,k\} \in K} \kappa ||\underline{v}_j - \underline{v}_k||^2$$

Motivation for spring energy E_{spring} :

- guarantees existence of minimum
- prevents parts of the surface from wandering away from the data
- $\bullet\,$ tends to prevent self-intersection

5/9/2001

Energy minimization

Find vertices V to minimize

$$E(V) = \sum_{i=1}^{n} d^2(\underline{x}_i, \Phi_V(|K|)) + \sum_{\{i,j\} \in K} \kappa ||\underline{v}_i - \underline{v}_j||^2$$

Note: $d^2(\underline{x}_i, \Phi_V(|K|))$ is itself solution of optimization problem:

$$d^{2}(\underline{x}_{i}, \Phi_{V}(|K|)) = \min_{\underline{b}_{i} \in |K|} ||\underline{x}_{i} - \Phi_{V}(\underline{b}_{i})||^{2}$$
$$= \min_{\underline{b}_{i} \in |K|} ||\underline{x}_{i} - \sum_{j=1}^{m} b_{ij}\underline{v}_{j}||^{2}$$

 ${\bf Restate \ fitting \ problem: \ Minimize \ new \ objective \ function}$

$$E(V,B) = \sum_{i=1}^{n} ||\underline{x}_{i} - \Phi_{V}(\underline{b}_{i})||^{2} + \sum_{\{j,k\} \in K} \kappa ||\underline{v}_{j} - \underline{v}_{k}||^{2}$$

over vertex positions $\underline{v}_1, \ldots, \underline{v}_m$ and barycentric coordinates $\underline{b}_1, \ldots, \underline{b}_n$.

5/9/2001

10

Optimization method

Want to minimize

$$E(V,B) = \sum_{i=1}^{n} ||\underline{x}_{i} - \Phi_{V}(\underline{b}_{i})||^{2} + \sum_{\{j,k\} \in K} \kappa ||\underline{v}_{j} - \underline{v}_{k}||^{2}$$

over vertex positions $\underline{v}_1, \ldots, \underline{v}_m$ and barycentric coordinates $\underline{b}_1, \ldots, \underline{b}_n$.

Suggests alternating minimization scheme:

- For fixed \underline{v} 's, can find optimal \underline{b} 's by projection
- For fixed \underline{b} 's, can find optimal \underline{v} 's by solving 3 linear LS problems

Note:

- can use continuity between iterations in projection step
- $\bullet~{\rm LS}$ problems are large but sparse use conjugate gradients

5/9/2001

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><list-item><list-item><list-item><list-item>

Outline for a class of procedures	
• Define elementary simplification operation (edge collapse, vertex removal, vertex merge)	
• Define error metric that measures the discrepancy between a simplified mesh and the original mesh M_{orig} .	
• Given the current simplified mesh M_j , collapse the edge (remove the vertex,) that leads to the smallest increase in error.	
5/9/2001	14

<section-header><text><text><section-header><text><text><equation-block><section-header><section-header><equation-block><equation-block>

Key insights	
Can store information for vertex split that undoes edge collapse:	
\bullet original positions of vertices that were merged	
• incident edges of original vertices	
• attributes of corners and faces	
Can represent original mesh by simplest (base) mesh and vertex splits.	
Allows progressive transmission and selective refinement.	
Can smoothly morph between meshes (obvious for consecutive meshes in sequence)	

2.5 Mesh simplification using quadratic error metrics

 $Elementary\ simplification\ operation:\ edge\ collapse$

Error metric, assuming no attributes (Garland and Heckbert 97): Associate each vertex with a collection \mathcal{L} of planes defined by its incident faces. Define distance between a point \underline{x} and a collection of planes \mathcal{L} by

$$d^{2}(\underline{x}, \mathcal{L}) = \sum_{L \in \mathcal{L}} d^{2}(\underline{x}, L)$$

Define loss $E(\{i, j\})$ incurred when collapsing edge $\{i, j\}$:

$$E(\{i, j\}) = \min_{\underline{x}} d^2(\underline{x}, \mathcal{L}_i \cup \mathcal{L}_j)$$

Simplification step

- $\bullet\,$ Collapse edge k,m with minimum loss and remove degenerate faces
- Associate vertex k with the collection of planes $\mathcal{L}_k^{new} = \mathcal{L}_k^{old} \cup \mathcal{L}_m^{old}$
- Define new vertex position $\underline{v}_k^{new} = \operatorname{argmin}_{\underline{x}} d^2(\underline{x}, \mathcal{L}_k^{new})$

5/9/2001

Computing distances between points and planes

Let L be the plane defined implicitly by

$$L = \{ \underline{x} \mid \underline{x} \cdot \underline{n} + d = 0 \}$$

with $||\underline{n}|| = 1$.

Then \underline{n} is normal to the plane.

The projection of a point x onto the plane is of the form $\underline{x} + c \underline{n}$, where c has to satify the condition $(\underline{x} + c \underline{n}) \cdot \underline{n} + d = 0$

or

$$c = -(\underline{x} \cdot \underline{n} + d)$$

Therefore the squared distance between \underline{x} and L is

$$\begin{aligned} d^2(\underline{x},L) &= (\underline{x} \cdot \underline{n})^2 + 2 d (\underline{x} \cdot \underline{n}) + d^2 \\ &= \underline{x}^T (\underline{n} \, \underline{n}^T) \, \underline{x} + 2 d (\underline{x} \cdot \underline{n}) + d^2 \end{aligned}$$

For collection of planes $\mathcal{L} = \{L_1, \ldots, L_m\}$ we have

$$d^{2}(\underline{x},\mathcal{L}) = \underline{x}^{T} \left(\sum_{i} (\underline{n}_{i} \, \underline{n}_{i}^{T}) \right) \underline{x} + 2 \left(\underline{x} \cdot \sum_{i} d_{i} \, \underline{n}_{i} \right) + \sum_{i} d_{i}^{2}$$

5/9/2001

22

Recall:

$$d^2(\underline{x}, \mathcal{L}) = \underline{x}^T \left(\sum_i (\underline{n}_i \ \underline{n}_i^T) \right) \underline{x} + 2 \left(\underline{x} \cdot \sum_i d_i \ \underline{n}_i \right) + \sum_i d_i^2$$

Therefore:

- Easy to find \underline{x} minimizing $d^2(\underline{x}, \mathcal{L})$ (quadratic function)
- No need to remember all normals and offsets associated with a vertex; enough to keep $\sum \underline{n}_i \underline{n}_i^T$, $\sum d_i \underline{n}_i$, and $\sum d_i^2$

Note: Iso-surfaces of $d^2(\underline{x}, \mathcal{L})$ are ellipses.

Lengths and directions of principal axes are related to mesh curvature.

Note: Quadratic form can be degenerate $\Rightarrow \operatorname{argmin}_{\underline{x}} d^2(\underline{x}, \mathcal{L})$ does not exist. In this case pick the best of the two original vertex positions for the new vertex.

23

5/9/2001

Hoppe's quadratic metric (Hoppe 99)

Recap of G & H:

Each vertex i of original mesh M is associated with quadratic function Q_i

$$Q_i(\underline{x}) = d^2(\underline{x}, \mathcal{L}_i) = \sum_{L \in \mathcal{L}_i} d^2(\underline{x}, L)$$

where \mathcal{L}_i is the collection of planes defined by the faces incident to vertex *i*. Note: If there are *m* vertex attributes, then *L* will be a plane in R^{3+m} Loss $E(\{i, j\})$ incurred when collapsing edge $\{i, j\}$ is defined as

 $E(\{i, j\}) = \min_{\underline{x}} \left(Q_i(\underline{x}) + Q_j(\underline{x})\right)$

Algorithm:

- Collapse edge $\{k, l\}$ with minimum loss
- $\bullet \ Q_k^{new} = Q_k^{old} + Q_l^{old}$
- $\underline{v}_k^{new} = \operatorname{argmin}_x Q_k^{new}(\underline{x})$

5/9/2001

Hoppe changes definition of $Q_i(\underline{x})$. Let $f = \{i, j, k\}$ be a face incident on vertex i. Will define quadratic function Q_i^f associated with vertex *i* and face *f*. Let L be the plane in R^3 defined by the geometric positions $\underline{p}_i,\underline{p}_j,\underline{p}_k$ of the vertices. Let $h(\underline{s})$ be the linear function on L defined by $h(\underline{p}_i) = \underline{s}_i, h(\underline{p}_j) = \underline{s}_j, h(\underline{p}_k) =$ \underline{s}_k . Define $Q_i^f(\underline{x}) = Q_I^f((\underline{p},\underline{s})) = d^2(\underline{p},L) + ||\underline{s} - h(P_L(\underline{p}))||^2 \qquad (\mathbf{p}\cdot\mathbf{p}) = \text{geometric error}$ (is so rejection of p on plane L where $P_L(\underline{p}) = \text{projection of } \underline{p} \text{ on plane } L$. So: $Q_i^f((\underline{p}, \underline{s})) =$ squared distance of geometric position p to plane L defined by face f + squared difference between attribute vector \underline{s} and its predicted value at $P_L(p)$. Quadratic function $Q_i(\underline{x}) = \sum_f Q_i^f(\underline{x})$, where the sum is over the faces incident on vertex i. 5/9/2001 30

