Modeling aspects of 3d Photography

1. Outline

Given:
Dense triangular mesh M, possibly with colored vertices.

Will talk about:

a. Mesh simplification and multiresolution analysis of meshes

b. Mesh parameterization

c. Conversion to other surface representations
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a. Mesh simplification and multiresolution analysis of meshes
Decompose original mesh M into

* simple base mesh M,

« series of correction terms of decreasing magnitude

By successively adding correction terms, can generate sequence of meshes M,,
M, M,,... approaching M.

(i) Approx. (€ = 1.5%; 4.725 faces)

(g) Original mesh (103,713 faces) (h) Base mesh (229 faces)
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Motivation

» Compression

* Progressive transmission
* Level-of-detail control

 Multiresolution editing

LoD control: 38K - 4.5K -
1.9K faces

(d) Original mesh (698 faces) (e) Surface editing at a coarse level () Surface editing at a finer level
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b. Mesh parameterization

Establish correspondence between points on original mesh and points on the
meshes M, M,,.....

Piecewise linear 1-to-1
continuous map

Motivation

Texture mapping --- can cover up
lack of geometric detail
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c. Conversion to other surface representations

Approximate mesh by subdivision surface, spline patches,.......

Subdivision surface

Mesh (25K vertices)  B-spline surface
27 x 36 control points

Motivation

« Parsimonious representation of smooth surfaces
* Use of models in CAD systems
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2. Mesh simplification and multiresolution
analysis of meshes

2.1 Representation of meshes

A mesh is a pair M = (K,V):
e The simplicial complex K determines the connectivity of the vertices,
edges, and faces of the surface.

o The vertex positions V' = (v,,...,v,,) determine the geometric shape of
the surface in R3.

Definition of K:

e K is a collection of subsets of {1,...,m}
e {1} {meK
o {i,j} € Kiffy; and v; are connected by edge in S.

o {i,5,k} € K iff v, v;, v, are vertices of a face of S

i) Y
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Define topological realization |K| C R™:
Simplicial complex K

e mesh in R™ vertices{ 1}, {2}, {3}
edges: {1,2}, {2,3}, {1,3}
e obtained by identifying 1-simplices {1}, ..., {m} faces: {1,2,3}
with eq,...,€,,.

Topological realization |K| ~ Geometric realization (V)
v

Define linear map @y : R™ — R3 by
Py (g) =w;, i=1,...,m.
For every point y € S there is unique point b € |K| with

Qv(b)=y

b: barycentric coordinates of y

Note: b has at most 3 non-zero components.
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2.2 Fitting a mesh to a set of points
Given:

e Set of points z;,...,z, € R3

o Initial mesh M = (&, V)

Goal:

Change vertex positions V = {vy,...,2,} to improve approximation of points
by mesh.

Approach:

o Define energy function E(V') that measures distance of mesh from points.

e Minimize £(V) over vertex positions using numerical optimization.
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Definition of energy
E(V) = Eus(V)+ Espring(V)

> d(z, B (K])
i=1
+ Z “”27‘%«”2

{ik}eK

Motivation for spring energy F,pring:

e guarantees existence of minimum
e prevents parts of the surface from wandering away from the data

e tends to prevent self-intersection
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Energy minimization
Find vertices V' to minimize
EWV)=> d (@, ov(K))+ Y #lly -yl
i=1 {i.jeK
Note: d?(z;, @y (|K])) is itself solution of optimization problem:
(z;, Py (|K])) = min |lz; — Dy ()|
&*(z;, Pv (1K]) ,rain fla; = @y ()l
m
— 3 .. 2
= oin [lz; - > bisl
i j=1
Restate fitting problem: Minimize new objective function
n
E(V,B) =) _lle = ov)lP+ 32 wlle; - wll
i=1 {ikleK
over vertex positions v, ...,v,, and barycentric coordinates b,...,b,.
5/9/2001 10




Optimization method

Want to minimize

E(WV,B) =) llz; = ev()l* + Y wlly —ulf
i=1

{ik}EK
over vertex positions vy, ...,v,, and barycentric coordinates b;,...,b,.
Suggests alternating minimization scheme:

e For fixed v’s, can find optimal b’s by projection

e For fixed b’s, can find optimal v’s by solving 3 linear LS problems
Note:

e can use continuity between iterations in projection step

e LS problems are large but sparse — use conjugate gradients
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2.3 Basics of mesh simplification

Given:

Complex mesh M,,;4, possibly with associated information — face colors, face

textures, normals at the vertices (or at the corners), sharp edges, etc.

Goal:

Generate sequence of simpler meshes My, M1, M», ... approximating Mo,y

Important characteristics

o Are the simplified meshes surfaces (no singularities)?
e Can the topological type change?

o Efficient ”undo”?

e Smooth ”geomorphing” between approximations?

e Texture mapping?
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Outline for a class of procedures

Define elementary simplification operation

e collapse an edge
e remove a vertex and re-triangulate — more general than edge collapse

e merge two vertices, not necessarily connected by an edge

Edge collapse Vertex removal Vertex merge
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Outline for a class of procedures

o Define elementary simplification operation (edge collapse, vertex removal,
vertex merge)

e Define error metric that measures the discrepancy between a simplified
mesh and the original mesh M,,4.

o Given the current simplified mesh M}, collapse the edge (remove the ver-
tex,..) that leads to the smallest increase in error.
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2.4 Progressive meshes (Hoppe 1997)

Given:

Complex mesh M,,;,, with associated attributes:

e discrete attributes — colors — for faces

o scalar attributes — normals — for corners = (vertex, face) pairs

Goal:

Generate sequence of simpler meshes My, My, Ms, ... approximating Mo, .

Characteristics

o Are the simplified meshes surfaces (no singularities)? Yes

e Can the topological type change? No
e Efficient "undo”? Yes
e Smooth ”geomorphing” between approximations? Yes

e Texture mapping? No (at the time)
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Sketch of simplification method
Elementary simplification operation: edge collapse

Error metric (assuming no attributes):

Sample points z,, ..., z, from M4 (vertices v,,...,vn + possibly additional
points.)

Measure error of a mesh M = (K, V) by

E(M) = Zdz(ﬁi’M)'f"@ Z Ilo; = wl1?

{ij}eK

Simplification step:

o For each (legally collapsible) edge of current mesh M = (K, V)

— Collapse edge: K — K’

— Find vertex positions V/ minimizing F(M’)

o Collapse edge for which F(M’) is smallest
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Computational shortcuts:

o Collapsing an edge will not change optimal positions of vertices far away
from edge =
— Only optimize over position of newly generated vertex
Only use those points x; that project onto the disc surrounding the
edge
e Initially generate priority queue of edges sorted according to increase in
error incurred by collapse
Collapse edge in front of queue

Update errors for edges in neighborhood of collapsed edge

Dealing with attributes

Quite complex. Add terms to error metric that penalize changes in topology of
discontinuity curves. For details, see paper.
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Key insights
Can store information for vertex split that undoes edge collapse:
e original positions of vertices that were merged
e incident edges of original vertices
e attributes of corners and faces
Can represent original mesh by simplest (base) mesh and vertex
splits.
Allows progressive transmission and selective refinement.
Can smoothly morph between meshes (obvious for consecutive meshes in se-
quence)
18
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(a) Base mesh M” (150 faces)  (h) Mesh M (300 laces) () Mesh M™ (1,000 faces) (d) Original H=M" (13,546 faces)
Figure §: The PM representation of an arbitrary mesh A caprures a continuous-resolution family of approximating meshes M° . M" =44,

(ap o = 0,000 (by @ = 0,25 (chex = 0,500 (dyo =075 (e = 1,00
Figure 6: Example of a geomorph M (e} defined between ME(0)=M"™ (with 500 faces) and MU(1=M"* (with 1,000 faces),
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(a) M (200 x 200 vertices) (b) Simplified mesh (400 vertices)

Figure 8: Demonstration of minimizing .2 simplification of a mesh with trivial geometry (a square) but complex scalar attribute ficld.
(M is a mesh with regular connectivity whose vertex colors correspond to the pixels of an image.)
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2.5 Mesh simplification using quadratic error
metrics

Elementary simplification operation: edge collapse

Error metric, assuming no attributes (Garland and Heckbert 97):
Associate each vertex with a collection £ of planes defined by its incident faces.

Define distance between a point 2 and a collection of planes £ by

d* (2, )= d*(z,L)

Lel
Define loss ({7, j}) incurred when collapsing edge {i, j}:
B({7.4)) = min d*(z, £ U £;)
Simplification step

o Collapse edge k, m with minimum loss and remove degenerate faces
o Associate vertex k with the collection of planes £7e¥ = £ U £2)¢

o Define new vertex position v7°¥ = argmin, d*(z, £L7°V)

5/9/2001 21
Computing distances between points and planes
Let L be the plane defined implicitly by
L={z|z n+d=0}
with [|n]| = 1.
Then n is normal to the plane.
The projection of a point # onto the plane is of the form « 4+ ¢n, where ¢ has
to satify the condition
(z+cen) n+d=0
or
c=—(z-n+d)
Therefore the squared distance between z and I is
(2, I) = (z-n)’+2d(x n)+d*
= 2Z"mnNe+2d(z-n)+d*
For collection of planes £ = {Ly,..., Ly} we have
&*(z, L) = 2" <Z(ﬂi ﬂiT)) z+2 (£ > di ﬂz) +y d
B i @
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Recall:

(e, 0)=2" [ D (mn!) | z+2 [z ding |+ d?

Therefore:

o Easy to find  minimizing d*(z, £) (quadratic function)

e No need to remember all normals and offsets associated with a vertex;
enough to keep Y. m; 0, S d;n;, and 3. d?

Note: Iso-surfaces of d?(z, L) are ellipses.

Lengths and directions of principal axes are related to mesh curvature.

Note: Quadratic form can be degenerate = argmin,, d*(z, £) does not exist.

In this case pick the best of the two original vertex positions for the new vertex.
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Results
Figure 4: A sequence of approximations generated using our algorithm. The original model on the left has 5,804 faces. The approximations
1o the right have 994, 532, 248, and 64 faces respectively. Note that features such as horns and heoves continue to exist through many simpli-
fications, Only at extremely low levels of detail do they begin to disappear.
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Fiuure 8 Originl hunny model with 69451 triangles. Rendered Fiure Y: An approximation using only 1000 triangles (generated

using (i shading justas in approximations below, in 15 seconds ).

o

Figure 0 An approximation using only 100 triangles tgencrated in I
15 seeonds). tex are shown in green,

S0

=

e 112 1000 Face approximation. Frror ellipsoids Tor cach ver-
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Incorporating surface attributes (Garland and Heckbert 98)
e Associate each vertex with a vector v = (p, s) € R3T™.
p: geometric position;
s: attributes.
e Mesh now is a 2d surface in R". Everything generalizes in the obvious
way.
Dealing with boundaries
e For each boundary edge, generate boundary plane orthogonal to incident
face.
e Add boundary plane to plane collections associated with incident vertices.
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(a) Original cylinder

by No constraints

() Boundary constraints

ll

Figure 3: (1) Open-ended cylinder with 7960 faces. (h) With un- Figure 72 At lefi: a curved surface (18,050 faces) with colors at
constrained houndaries, this 2,460 face approximation quickly de- cach vertex. Atrght: 100D face approximation. Notice that mesh
generates, (¢) Using boundary constraints, the shape is preserved edges follow the color contours.

(also 2460 faces).
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by () (dy (eh

tay

Figure #: Simplifying seometry only: A very complex model of 1.085.634 faces (1) is simplified 1o 20,000 faces (h-¢) and 1000 fces (d-¢).

{a) (b) i) oy

Figure 9: Simplifying geometry & color: A Gouraud-shaded surfuce of 73,728 faces (a) is reduced to 20,000 faces (b) and 3.000 faces (c—d).
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Hoppe’s quadratic metric (Hoppe 99)

Recap of G & H:

Each vertex i of original mesh M is associated with quadratic function @;

Qi(x) =d(x, L) =Y d*(z, L)

LeL;

where £; is the collection of planes defined by the faces incident to vertex i.
Note: If there are m vertex attributes, then L will be a plane in R3+™

Loss E({i, j}) incurred when collapsing edge {1, j} is defined as
E({i,7}) = min (Qi(z) + Q5(z))

Algorithm:

o Collapse edge {k,{} with minimum loss
. Qzew — led + Q;;ld

o 2f = argmin, Q}(2)
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Hoppe changes definition of Q;(z).

Let f = {4, j,k} be a face incident on vertex .

Will define quadratic function Q{ associated with vertex i and face f.

Let L be the plane in R? defined by the geometric positions YA of the
vertices. ’

Let h(s) be the linear function on L defined by h(gi) =s;, h(gj) =s;, h(Bk) =

S

Define

Ql(x) = Q}((p.9)) = d*(p, L) + |ls — h(PL(p))||> ~, BF= oo

(Is-8'l = attribute error)

where P (p) = projection of p on plane L.

So: Qf ((p.5) =

squared distance of geometric position p to plane L defined by face f +
squared difference between attribute vector s and its predicted value at Pr(p).

Quadratic function Qi (z) = 37, Q{(g), where the sum is over the faces incident
on vertex 1.
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Additional enhancements suggested in Hoppe (99)
Deal with attribute discontinuities by associating attributes with (vertex, face)
pairs (wedges).

Memorlyless simplification: At each step, define quadratic functions @; based
on current mesh, not on original mesh.

Surprise: Can work better.

slops simpiifying in this region

Figure 6: Mustration of standard QEM and memoryless QEM s
plification, The dashed ovals symbolize the shapes of the quadric
functionals : (a) in the standard scheme they are are computed
once in a preprocess and subsequently summed during simplifica-
tion: (b in the memuoryless scheme they are computed using the
mesh simplified so far.

5/9/2001 31

() Original mesh (79,202 faces) (h) Simplified using @ from |7] (¢) Simplificd using our new @

Figure 3; Result of simplifying a vertex-colored 200 200 mesh down to 1,000 [aces using the previous QEM [7] and using our new QEM.
Mesh edges are rendered on the left hall of each image. Weights ; relating color to geometric accuracy are set 1o 1,

() Original mesh (h) Simplified using 7] (¢) Simplified using our scheme

Figure & Simplification of a vertex-colored mesh of 135,133 faces down to 1,500 faces,
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(a) Original me: (b) @ is just geometrie error (¢) 2 also includes normals

Figure 11: Simplification of a mesh of 9200000 faces down w 10000 fac
carried through. In (c) we optimize both geometry and normals, using _ =

For the geometric simplification in (h). normals are simply
.02 for normals.
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