Shadow Scanning [Bouguet 1999]

J.-Y. Bouguet and P. Perona, "3D Photography on your desk", ICCV’98, pages 43-50, January 1998 available at: http://www.vision.caltech.edu/bouguetj/ICCV98/

Basic Idea

Calibration issues:

- where's the camera wrt. ground plane?
- where's the shadow plane?
- depends on light source position, shadow edge

Two Plane Version

(from Jiwon Kim and Jia-chi Wu)

Advantage

- don't need to pre-calibrate the light source
- shadow plane determined from two shadow edges

Angel experiment

Accuracy: 0.1 mm over 10 cm \qquad

Textured objects

Shading as a 3D Cue

Merle Norman Cosmetics, Los Angeles

Shape from Shading [Horn, 1970]

Classical Approach

- Suppose reflected light depends only on α radiance $=k \cos \alpha$

The Reflectance Map

Image

Reflectance Map:

$$
\mathrm{R}(\mathrm{p}, \mathrm{q})=\cos \alpha
$$

$\mathbf{N}=\left[\begin{array}{lll}\frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} & -1\end{array}\right]=\left[\begin{array}{lll}p & q & -1\end{array}\right]$

The Reflectance Map

Reflectance Map

Image

Finding a Unique Solution
Three Approaches

- Characteristic Strip Method [Horn, 77]
- select a few points where normal is known
- grow solution by moving direction of $\boldsymbol{\nabla R}$
- Variational Method [lkeuchi \& Horn, 81]
- start with an initial guess of surface shape
- define energy function
- refine to minimize energy function
- Photometric Stereo [Woodham 80]
- use more images

Shape from Shading

Lee \& Kau 91 (from survey by Zhang et al., 1999)

Photometric Stereo

Two Images Under Different Lighting

Need Three Images for Unique Solution

Photometric Stereo: Matrix Formulation

Write Equations in Matrix Form

Advantage:

- Can solve for reflectance k that varies over the surface

Depth from Normals

- Solve for $z(i, j)$ from (p, q)
- This is an integration problem—can be solved by minimizing an energy function:

$$
\begin{aligned}
& E=E_{\text {data }}+E_{\text {smooth }}+E_{\text {constraint }} \\
& =\sum_{i, j} w_{d a t a} *\left[\left(\frac{\partial z(i, j)}{\partial x}-p_{i j}\right)^{2}+\left(\frac{\partial z(i, j)}{\partial y}-q_{i j}\right)^{2}\right] \\
& +\sum_{i, j} w_{\text {smoots }} *\left[\left(\frac{\partial^{2} z(i, j)}{\partial x^{2}}\right)^{2}+2\left(\frac{\partial^{2} z(i, j)}{\partial x \partial y}\right)^{2}+\left(\frac{\partial^{2} z(i, j)}{\partial y^{2}}\right)^{2}\right] \\
& +\sum_{(i, j) \text { constraints }} w_{\text {construmt }} *\left(z(i, j)-c_{i j}\right)^{2}
\end{aligned}
$$

(from Yung-Yu Chuang and David Ely)

Issues

Limitations?

- Lambertian assumption
- No interreflections
- work by Shree Nayar \& colleagues addresses this issue
- No transparency
- No discontinuities
- Requires known light source

Strengths (compared to stereo)?

- No correspondence problem
- Recovers reflectance parameter
- Easier to implement

Bibliography

Shape from Shading/Photometric Stereo

- B. Horn and M. Brooks, "Shape from Shading", 1989, MIT Press.
- L. Wolff, S. Shafer, and G. E. Healey, "Physics-Based Vision: Shape Recovery", 1992, Jones and Bartlett.
- R. J. Woodham, "Photometric Method for Determining Surface Orientation from Multiple Images", Optical Engineering, 1980, pp. 139-144.

Shadow Scanning

- J.-Y. Bouguet and P. Perona, "3D Photography on your desk", ICCV'98, pages 43-50, January 1998.
- J.-Y. Bouguet and P. Perona, "3D photography using shadows in dual-space geometry", to appear in the International Journal of Computer Vision.
- For papers, images, models, talks, and more, see: http://www.vision.caltech.edu/bouguetj/ICCV98/

