Differential Constraints

- Not as simple!
- Calculate f_{c} to yield a legal
combination of a and v
faster you have to turn - the faster you're going, the
:л pue e yıoq uo spuәdәр x

-••Inq 'rop! əurs •

loss

 Assumption: constraint is for Just one unknown to solve Constraint force: gradient
vector times a scalar λ

Example: Point-on-circle
How do you implement all this?

- We have a global matrix equation
- We want to build models on the fly, just like
masses and springs
- Approach:
- Each constraint adds its own piece to
the equation

Compact Particle System Notation

A whole other way to do it. force accumulators. - Add constraint force to particle

 - Loop over constraints, assemble

Parametric bead-on-wire $(\mathbf{f}=\mathbf{m v})$

