
D
ifferen

tialC
o

n
strain

ts

B
eyond

P
oints

and
Springs

•
Y

ou
can

m
ake

just
about

anything
out

of
point

m
asses

and
springs,in

principle

•
In

practice,you
can

m
ake

anything
you

w
ant

as
long

as
it’s

jello
•

C
onstraints

w
illbuy

us:
–

R
igid

links
instead

ofgoopy
springs

–
W

ays
to

m
ake

interesting
contraptions

A
bead

on
a

w
ire

•
D

esired
B

ehavior:
–

T
he

bead
can

slide
freely

along
the

circle
–

It
can

never
com

e
off,

how
ever

hard
w

e
pull

•
Q

uestion:
–

H
ow

does
the

bead
m

ove
under

applied
forces?

P
enalty

C
onstraints

•
W

hy
not

use
a

spring
to

hold
the

bead
on

the
w

ire?

•
P

roblem
:

–
W

eak
springs

⇒⇒⇒ ⇒
goopy

constraints

–
Strong

springs
⇒⇒⇒ ⇒

neptune
express!

•
A

classic
stiff

system



T
he

basic
trick

(f
=

m
v

version)
•

1st
order

w
orld.

•
L

egalvelocity:
tangent

to
circle

(N
·v

=
0)

•
P

rojectapplied
force

f
onto

tangent:
f

'=
f

+
fc

•
A

dded
norm

al-direction
force

fc :
constraintforce

•
N

o
tug-of-w

ar,no
stiffness

N
ff

c

f '

c

⋅
=

−
⋅
f
N

f
N

N
N

c
′=

+
f

f
f

f
=

m
a

•
Sam

e
idea,but…

•
C

urvature
(κ)

has
to

m
atch.

•
κ

depends
on

both
a

and
v:

–
the

faster
you’re

going,the
faster

you
have

to
turn

•
C

alculate
fc to

yield
a

legal
com

bination
of

a
and

v

•
N

ot
as

sim
ple!

f

v

κ
f

c
f '

N

N
ow

for
the

A
lgebra

…

•
F

ortunately,
there’s

a
generalrecipe

for
calculating

the
constraint

force

•
F

irst,a
single

constrained
particle

•
T

hen,generalize
to

constrained
particle

system
s

R
epresenting

C
onstraints

I.Im
plicit:

II.P
aram

etric:

P
oint-on-circle

(
)

0
C

r
=

−
=

x
x

[
]

cos(
),sin(

)
θ

θ
=
x

r



M
aintaining

C
onstraints

D
ifferentially

•
Start

w
ith

legalposition
and

velocity.

•
U

se
constraint

forces
to

ensure
legalcurvature.

0
legalposition

0
legalvelocity

0
legalcurvature

CCC

===

!!!

0
C

=

0
C

=
!!

0
C

=
!

C
onstraint

G
radient

Im
plicit:

C
(x

)
=

x
-

r
=

0

D
ifferentiating

C
gives

a
norm

alvector.

T
his

is
the

direction
our

constraint
force

w
illpoint

in.
P

oint-on-circle

C
N

x

∂
=

∂
(

)
0

C
r

=
−

=
x

x

C
onstraint

F
orces

C
onstraint

force:
gradient

vector
tim

es
a

scalar
λλλ λ

Just
one

unknow
n

to
solve

for

A
ssum

ption:
constraint

is
passive—

no
energy

gain
or

loss
P

oint-on-circle

c
f

N
λ

=

C
onstraint

F
orce

D
erivation

Set
C

=
0,

solve
for

λλλ λ:
¨

C
onstraint

force
isλN

.
2

N
otation:

,
∂

∂
=

=
∂

∂
∂

!
C

C
N

N
x

x
t

(
)

C
N

x

C
N

x
tN

x
N

x

=
⋅

∂
=

⋅
∂

=
⋅

+
⋅

!
!

!!

!
!

!!

c
f

f
x

m +
=
!!

c
f

N
λ

=
(

)
(

)
C

x
t

N
x

N
f

m
N

N
N

N
λ

⋅
⋅

=
−

−
⋅

⋅

!
!



E
xam

ple:
P

oint-on-circle
W

rite
dow

n
the

constraint
equation.

T
ake

the
derivatives.

Substitute
into

generic
tem

plate,sim
plify.

2
1

C
rt

=
−

∂
=

=
∂∂

⋅



=

=
−




∂
∂

⋅




xC
x

N
x

x

C
x
x

N
x

x
x

x
x
x !

!
!

(
)

(
)

2
1

m
m

m
λ




⋅
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⋅
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−
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−
⋅
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⋅


⋅
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x
x

N
x

N
f

x
x

x
f

N
N

N
N

x
x
x !

!
!

D
rift

and
F

eedback

•
In

principle,clam
ping

at
zero

is
enough

•
T

w
o

problem
s:

–
C

onstraints
m

ight
not

be
m

et
initially

–
N

um
ericalerrors

can
accum

ulate
•

A
feedback

term
handles

both
problem

s:

C

α
and

β
are

m
agic

constants.

, instead of

0

C
C

C

C

α
β

=
−

−
=

!
!!

T
inkertoys

•
N

ow
w

e
know

how
to

sim
ulate

a
bead

on
a

w
ire.

•
N

ext:
a

constrained
particle

system
.

–
E

.g.constrain
particle/particle

distance
to

m
ake

rigid
links.

•
Sam

e
idea,but…

C
onstrained

particle
system

s

•
P

article
system

:
a

point
in

state
space

•
M

ultiple
constraints:

–
each

is
a

function
C

i (x
1 ,x

2 ,…
)

–
L

egalstate:
C

i =
0,∀∀∀ ∀

i

–
Sim

ultaneous
projection

–
C

onstraint
force:

linear
com

bination
of

constraint
gradients

•
M

atrix
equation



C
om

pact
P

article
System

N
otation

q:
3n-long

state
vector.

Q
:

3n-long
force

vector.

M
:

3n
x

3n
diagonalm

ass
m

atrix.

W
:

M
-inverse

(elem
ent-

w
ise

reciprocal)

=
q

W
Q

!!
[

]
[
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=

q
x
x

x

Q
f
f

f

WW
M

!!
""

#

P
article

System
C

onstraint
E

quations

C
=

C
1 ,C

2 ,
,C

m

λλλ λ
=

λ
1 ,λ

2 ,
,λ

m

J
=

∂C∂q

J
=

∂
2C

∂q∂t

q
=

W
Q

+
J

Tλλλ λ

M
atrix

equation
forλλλ λ

C
onstrained

A
cceleration

M
ore

N
otation

D
erivation:justlike

bead-on-w
ire.

JW
J

Tλλλ λ
=

-Jq
-

JW
Q

H
ow

do
you

im
plem

ent
allthis?

•
W

e
have

a
globalm

atrix
equation

•
W

e
w

ant
to

build
m

odels
on

the
fly,just

like
m

asses
and

springs

•
A

pproach:

–
E

ach
constraint

adds
its

ow
n

piece
to

the
equation

M
atrix

B
lock

Structure

C

x
i

x
j

J

•
E

ach
constraint

contributes
one

or
m

ore
blocks

to
the

m
atrix

•
Sparsity:

m
any

em
pty

blocks

•
M

odularity:
let

each
constraint

com
pute

its
ow

n
blocks

•
C

onstraint
and

particle
indices

determ
ine

block
locations

i

∂∂ Cx

j

∂∂
Cx



G
lobaland

L
ocal

C λλλ λ
f

c

xvfm

xvfm

C
onstraint

G
lobalStuff

J
J !

C !

C
onstraint

Structure

xvfm

xvfm

p2 p1

C
=

x
1

-
x

2
-

r

∂C∂x
1 ,

∂C∂x
2

∂
2C

∂x
1 ∂t ,

∂
2C

∂x
2 ∂t

C
C

D
istance

C
onstraint

E
ach

constraint
m

ust
know

how
to

com
pute

these

C
onstrained

P
article

System
s

xvfm

xvfm

…
xvfm

particles
n

tim
e

forces
nforces

…
F F

F
F

F

consts
nconstsC C

C
C

C
…

A
dded

Stuff

M
odified

D
eriv

E
valL

oop

…
F F

F
F

F

C
lear

F
orce

A
ccum

ulators
A

pply
forces

xvfm

xvfm

…
xvfm

xvfm

xvfm

…
xvfm

R
eturn

to
solver 1

2

4
C C

C
C

C
…

C
om

pute
and

apply
C

onstraint
F

orces

3 A
dded

Step



C
onstraint

F
orce

E
val

•
A

fter
com

puting
ordinary

forces:

–
L

oop
over

constraints,assem
ble

globalm
atrices

and
vectors.

–
C

allm
atrix

solver
to

getλλλ λ,m
ultiply

by
to

get
constraint

force.

–
A

dd
constraint

force
to

particle
force

accum
ulators.

J
T

Im
press

your
F

riends

•
T

he
requirem

ent
that

constraints
not

add
or

rem
ove

energy
is

called
the

P
rinciple

of
V

irtualW
ork.

•
T

he
λλλ λ's

are
called

L
agrange

M
ultipliers.

•
T

he
derivative

m
atrix,J,is

called
the

Jacobian
M

atrix.

A
w

hole
other

w
ay

to
do

it.

x
=

r
cos

θ
,sin

θ

I.Im
plicit:

II.P
aram

etric:

C
(x

)
=

x
-

r
=

0

P
oint-on-circle

θ

x

P
aram

etric
C

onstraints

x
=

r
cos

θ
,sin

θ

P
oint-on-circle

θ

x

•
C

onstraint
is

alw
ays

m
et

exactly.

•
O

ne
D

O
F

:θ.
•

Solve
for

. θ

P
aram

etric:



P
aram

etric
bead-on-w

ire
(f

=
m

v)

T
=

∂x∂θ

T

N
f

fc

f
=

m
v

(constrained)

chain
rule

com
bine

x
is

not
an

independent
variable.

F
irst

step—
get

rid
of

it:

c

c

f
f

x
m

x
T

f
f

T
m

θ

θ

+
==

+
=

!

!
!

!

F
or

our
next

trick…

T
=

∂x∂θ

T

N
f

fc

T
⋅fc

=
0

A
s

before,assum
e

fc points
in

the
norm

aldirection,so

W
e

can
nuke

fc by
dotting

T
into

both
sides:

from
last

slide

blam
!

rearrange.
1

c

c

f
f

T
mT

f
T

f
T

T
m

T
f

m
T

T

θ

θ

θ

+
=

⋅
+

⋅
⋅

=

⋅
=

⋅

!

!

!

G
eneralcase

0

w
here

+
−

=

∂
=

∂

T
T

T
J

M
J

J
M

Ju
J

u
Q

q
J

u !!
!!

[
]

w
here

T



=

−
−




∂
=

∂

JW
J

Jq
JW

Q

J
q

λ

C !!

N
ot

to
be

confused
w

ith:
L

agrange
dynam

ics:

P
aram

etric
C

onstraints:
Sum

m
ary

•
G

eneralizations:
f=

m
a,particle

system
s

–
L

ike
im

plicitcase
(see

notes)

•
B

ig
advantages:

–
F

ew
er

D
O

F
’s

–
C

onstraints
are

alw
ays

m
et

•
B

ig
disadvantages:

–
H

ard
to

form
ulate

constraints

–
N

o
easy

w
ay

to
com

bine
constraints

•
O

fficalnam
e:

L
agrangian

dynam
ics



H
ybrid

system
s

[
]

1

1

w
here

(
(

))

T

T
i

i
i

i

m

−

−




=
−

−







=
=







∂
∂

=
∂

∂

∫∫∫

JW
J

Ju
JW

Q

W
M

q
q

C
q

uC
q

J
q

u

λ
!!

P
roject

1:

•
A

bead
on

a
w

ire
(im

plicit)

•
A

double
pendulum

•
A

triple
pendulum

•
Sim

ple
interactive

tinkertoys


