Reading

Shoemake, "Quaternions Tutorial"

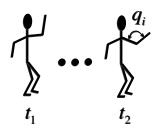
Topics in Articulated Animation

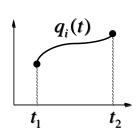
Animation

Articulated models:

- rigid parts
- connected by joints

They can be animated by specifying the joint angles (or other display parameters) as functions of time.





Character Representation

Character Models are rich, complex

- hair, clothes (particle systems)
- muscles, skin (FFD's etc.)

Focus is rigid-body Degrees of Freedom (DOFs)

• joint angles

Simple Rigid Body → **Skeleton**

Kinematics and dynamics

Kinematics: how the positions of the parts vary as a function of the joint angles.

Dynamics: how the positions of the parts vary as a function of applied forces.

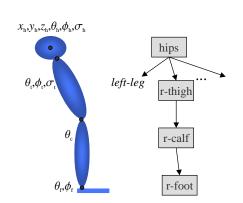
Key-frame animation

- Each joint specified at various **key frames** (not necessarily the same as other joints)
- System does interpolation or **in-betweening**

Doing this well requires:

- A way of smoothly interpolating key frames: **splines**
- A good interactive system
- A lot of skill on the part of the animator

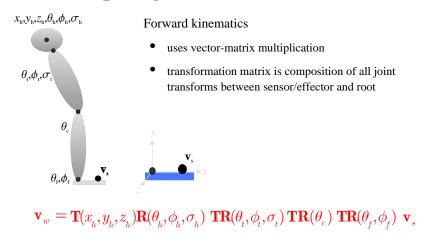
Efficient Skeleton: Hierarchy



- each bone relative to parent
- easy to limit joint angles

7

Computing a Sensor Position



Joints = Rotations

To specify a pose, we specify the joint-angle rotations

Each joint can have up to three rotational DOFs

2 DOF: wrist

3 DOF: arm

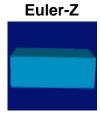
Create multi-DOF rotations by concatenating Eulers

Euler angles

An Euler angle is a rotation about a single Cartesian axis

Can get three DOF by concatenating:

Euler-X



11

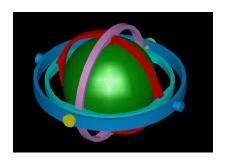
What *is* a singularity?

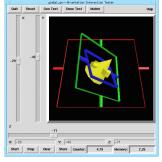
• continuous subspace of parameter space all of whose elements map to same rotation

Singularities

Why is this bad?

• induces **gimbal lock** - two or more axes align, results in loss of rotational DOFs (i.e. derivatives)



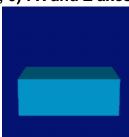


Singularities in Action

An object whose orientation is controlled by Euler rotation $XYZ(\theta,\phi,\sigma)$

(0,0,0) : Okay

 $(0, \pm 90^{\circ}, 0)$: X and Z axes align

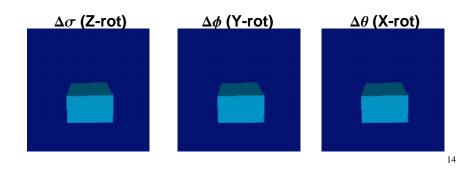


13

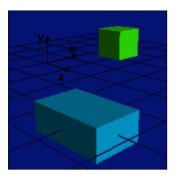
Eliminates a DOF

In this configuration, changing θ (X Euler angle) and σ (Z Euler angle) produce the same result.

No way to rotate around world X axis!



Resulting Behavior



No applied force or other stimuli can induce rotation about world X-axis

The object locks up!!

Singularities in Euler Angles

Cannot be avoided (occur at 0° or 90°)

Difficult to work around

But, only affects three DOF rotations

Other Properties of Euler Angles

Several important tasks are easy:

- interactive specification (sliders, *etc.*)
- joint limits
- Euclidean interpolation (Hermites, Beziers, etc.)
 - May be funky for tumbling bodies
 - fine for most joints

Quaternions

But... singularities are unacceptable for IK, optimization

Traditional solution: Use unit quaternions to represent rotations

• S³ has same topology as rotation space (a sphere), so no singularities

17

18

History of Quaternions

Invented by Sir William Rowan Hamilton in 1843

$$H = w + \mathbf{i}x + \mathbf{j}y + \mathbf{k}z$$

where $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1$

I still must assert that this discovery appears to me to be as important for the middle of the nineteenth century as the discovery of fluxions [the calculus] was for the close of the seventeenth.

Hamilton

[quaternions] ... although beautifully ingenious, have been an unmixed evil to those who have touched them in any way.

Thompson

Quaternion as a 4 vector

$$\mathbf{q} = \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} w \\ \mathbf{v} \end{pmatrix}$$

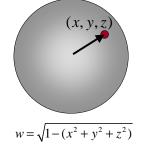
Axis-angle rotation as a quaternion

$$\mathbf{q} = \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} w \\ \mathbf{v} \end{pmatrix}$$

$$\mathbf{q} = \begin{pmatrix} \cos(\theta/2) \\ \sin(\theta/2)\mathbf{r} \end{pmatrix}$$

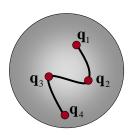
Unit Quaternions

$$\mathbf{q} = \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix}$$



$$|\mathbf{q}| = 1$$

 $x^2 + y^2 + z^2 + w^2 = 1$



22

Quaternion Product

$$\begin{pmatrix} w_1 \\ \mathbf{v}_1 \end{pmatrix} \begin{pmatrix} w_2 \\ \mathbf{v}_2 \end{pmatrix} = \begin{pmatrix} w_1 w_2 - \mathbf{v}_1 \cdot \mathbf{v}_2 \\ w_1 \mathbf{v}_2 + w_2 \mathbf{v}_1 + \mathbf{v}_1 \times \mathbf{v}_2 \end{pmatrix}$$

$$\begin{pmatrix} w_1 \\ \mathbf{v}_1 \end{pmatrix} \begin{pmatrix} w_2 \\ \mathbf{v}_2 \end{pmatrix} \neq \begin{pmatrix} w_2 \\ \mathbf{v}_2 \end{pmatrix} \begin{pmatrix} w_1 \\ \mathbf{v}_1 \end{pmatrix}$$

Quaternion Conjugate

$$\mathbf{q}^* = \begin{pmatrix} w_1 \\ \mathbf{v}_1 \end{pmatrix}^* = \begin{pmatrix} w_1 \\ -\mathbf{v}_1 \end{pmatrix}$$
$$(\mathbf{p}^*)^* = \mathbf{p}$$
$$(\mathbf{p}\mathbf{q})^* = \mathbf{q}^*\mathbf{p}^*$$

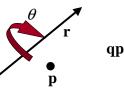
 $(\mathbf{p} + \mathbf{q})^* = \mathbf{p}^* + \mathbf{q}^*$

Quaternion Inverse

$$\mathbf{q}^{-1}\mathbf{q} = 1$$

$$\mathbf{q}^{-1} = \mathbf{q}^* / |\mathbf{q}| = {w \choose -\mathbf{v}} / |\mathbf{q}| = {w \choose -\mathbf{v}} / (w^2 + \mathbf{v} \cdot \mathbf{v})$$

Quaternion Rotation



$$\mathbf{q} \mathbf{p} \mathbf{q}^{-1} = \begin{pmatrix} w \\ \mathbf{v} \end{pmatrix} \begin{pmatrix} 0 \\ \mathbf{p} \end{pmatrix} \begin{pmatrix} w \\ -\mathbf{v} \end{pmatrix}$$

$$= \begin{pmatrix} w \\ \mathbf{v} \end{pmatrix} \begin{pmatrix} \mathbf{p} \cdot \mathbf{v} \\ w\mathbf{p} - \mathbf{p} \times \mathbf{v} \end{pmatrix}$$

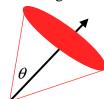
$$= \begin{pmatrix} w\mathbf{p} \cdot \mathbf{v} - w\mathbf{p} \cdot \mathbf{v} = 0 \\ w(w\mathbf{p} - \mathbf{p}\mathbf{v}) + (\mathbf{p} \cdot \mathbf{v})\mathbf{v} + \mathbf{v}(w\mathbf{p} - \mathbf{p} \times \mathbf{v}) \end{pmatrix}$$

What about a quaternion product $\mathbf{q}_1 \mathbf{q}_2$?

26

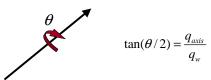
Quaternion constraints

Restricting the rotation cone



$$\frac{1 - \cos(\theta_x)}{2} = q_y^2 + q_z^2$$

Restricting the rotation twist around an axis



$$\tan(\theta/2) = \frac{q_{axis}}{q_{w}}$$

Matrix Form

$$\mathbf{q} = \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix}$$

$$\mathbf{M} = \begin{pmatrix} 1 - 2y^2 - 2z^2 & 2xy + 2wz & 2xz - 2wy \\ 2xy - 2wz & 1 - 2x^2 - 2z^2 & 2yz + 2wx \\ 2xz + 2wy & 2yz - 2wx & 1 - 2x^2 - 2y^2 \end{pmatrix}$$

Normalized Quaternion Matrix Form

$$\mathbf{q}_{n} = \alpha \mathbf{q}_{n}$$

$$\mathbf{q}_{n} = \frac{1}{\|\mathbf{q}\|} \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix}$$

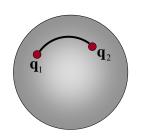
$$\mathbf{M}_{n} = \frac{1}{\|\mathbf{q}\|^{2}} \begin{pmatrix} \|\mathbf{q}\|^{2} - 2y^{2} - 2z^{2} & 2xy + 2wz & 2xz - 2wy \\ 2xy - 2wz & \|\mathbf{q}\|^{2} - 2x^{2} - 2z^{2} & 2yz + 2wx \\ 2xz + 2wy & 2yz - 2wx & \|\mathbf{q}\|^{2} - 2x^{2} - 2y^{2} \end{pmatrix}$$

Quaternion interpolation

Spherical linear interpolation (SLERP)

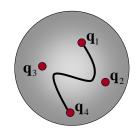
$$slerp(t; q_1, q_2) = q_1 \frac{\sin(\theta)(1-t)}{\sin(\theta)} + q_2 \frac{\sin(\theta)t}{\sin(\theta)}$$
$$\cos(\theta) = q_1 \cdot q_2$$

$$\cos(\theta) = q_1 \cdot q_2$$



30

Spherical cubic interpolation (SQUAD)



 $squad(t;q_1,q_2,q_3,q_4) = slerp(2t(1-t); slerp(t;q_1,q_4), slerp(t;q_2,q_3))$

Quaternions: What Works

Simple formulae for converting to rotation matrix

Continuous derivatives - no singularities

"Optimal" interpolation - geodesics map to shortest paths in rotation space

Nice calculus (corresponds to rotations)