CSE561 – Reliable Transport

David Wetherall djw@cs.washington.edu

Reliable Transport

- Focus:
 - Reliably delivering content across the network
- Connections
- Retransmission (ARQ)
- Sliding windows
- Flow control

Where the pieces fit

TCP Connection Setup

• Three-way handshake opens both directions for transfer

Some Comments

- We could abbreviate this setup, but it was chosen to be robust, especially against delayed duplicates
 - Three-way handshake from Tomlinson 1975
- Incrementing initial sequence numbers (ISNs) minimizes the chance of hosts that crash getting confused by a previous incarnation of a connection
- Random ISNs proves two hosts can communicate
 - Weak form of authentication

Diversion: TCP SYN cookies

- Goal is for server to keep no Client unnecessary state to be as robust as possible
- SYN cookie solution:
 - Instead, make client store state in response to SYN
 - Server picks return seq # y = © that encrypts x
 - Gets © +1 from sender; unpacks to yield x

TCP Connection Teardown

Kinds of Teardown

- FIN
 - TIME_WAIT for 2MSL (two times the maximum segment lifetime of 60 seconds) before completing the close
 - This is in case the ACK was lost and FIN will be resent
- RST
 - Not an orderly connection close
 - Server reliably sends data, then RST (unreliable), and moves on
 - Client deals with it

Automatic Repeat Request (ARQ)

- Packets can be corrupted or lost. How do we add reliability?
- Acknowledgments (ACKs) and retransmissions after a timeout
- ARQ is generic name for protocols based on this strategy

The Need for Sequence Numbers

- In the case of ACK loss (or poor choice of timeout) the receiver can't distinguish this message from the next
 - Need to understand how many packets can be outstanding and number the packets; here, a single bit will do

Stop-and-Wait

- Only one outstanding packet at a time
- Also called alternating bit protocol

Limitation of Stop-and-Wait

- Lousy performance if wire time << prop. delay
 - How bad? You do the math
- Want to utilize all available bandwidth
 - Need to keep more data "in flight"
 - How much? Remember the bandwidth-delay product?
- Leads to Sliding Window Protocol

Sliding Window Protocol

- There is some maximum number of un-ACK'ed frames the sender is allowed to have in flight
 - We call this "the window size"
 - Example: window size = 2

Once the window is full, each ACK'ed frame allows the sender to send one more frame

> djw // CSE 561, Spring 2010, L10

Sliding Window: Sender

- Assign sequence number to each frame (SeqNum)
- Maintain three state variables:
 - send window size (SWS)
 - last acknowledgment received (LAR)
 - last frame sent (LFS)
- Maintain invariant: LFS LAR <= SWS

- Advance **LAR** when ACK arrives
- Buffer up to **sws** frames

djw // CSE 561, Spring 2010, L10

Sliding Window: Receiver

- Maintain three state variables
 - receive window size (**RWS**)
 - largest frame acceptable (LFA)
 - last frame received (LFR)
- Maintain invariant: LFA LFR <= RWS

- Frame **SeqNum** arrives:
 - if $LFR < SeqNum \leq LFA \Rightarrow accept + send ACK$
 - if **SeqNum** \leq **LFR** or **SeqNum** > **LFA** \Rightarrow discard
- Send *cumulative* ACKs send ACK for largest frame such that all frames less than this have been received

djw // CSE 561, Spring 2010, L10

Flow Control

- Sender must transmit data no faster than it can be consumed by the receiver
 - Receiver might be a slow machine
 - App might consume data slowly
- Implement by adjusting the size of the sliding window used at the sender based on receiver feedback about available buffer space

Example – Exchange of Packets

Receiver has buffer of size 4 and application doesn't read

Example – Buffer at Sender

TCP Header Format

- Sequence, Ack numbers used for the sliding window
- AdvertisedWindow used for flow control

djw // CSE 561, Spring 2010, L10

Digital Fountain discussion

- What is the content distribution goal?
- What is the scaling problem with using retransmissions?
- What is the tradeoff between Tornado and RS codes?
- How much does interleaving help?
- What is layered multicast?