CSE561 — Reliable Transport

David Wetherall
djw@cs.washington.edu

Reliable Transport

 Focus:
— Reliably delivering content across the network

 Connections Application
e Retransmission (ARQ) Presentation
« Sliding windows Session
Transport
 Flow control
Network
Data Link
Physical

djw // CSE 561, Spring 2010, L10

Where the pieces fit

app

stuff write(), sendto(), send() read(), recvfrom(), recv()
Output Input
= T=
0S - ockatare -
StUﬁ Socket file descniptor Socket file descriptor
(== &=
d port port
Protocol bt L“ e ——_——— it T‘“‘ zm
StUﬁ " (TOP| dalm | - | P |TOP | deim Metwork Layer " TP | dal | - | |TOP| deim
l T
nk | (TGP | del k| TGP | oalm Link Laysr ik | TCP| dels | - Bk | TGP | delm

djw // CSE 561, Spring 2010, L10

TCP Connection Setup

« Three-way handshake opens both directions for transfer

Active participant Passive participant
(client) (server)

djw // CSE 561, Spring 2010, L10

Some Comments

* We could abbreviate this setup, but it was chosen to be robust,
especially against delayed duplicates
— Three-way handshake from Tomlinson 1975

 Incrementing initial sequence numbers (ISNs) minimizes the
chance of hosts that crash getting confused by a previous
Incarnation of a connection

 Random ISNs proves two hosts can communicate
— Weak form of authentication

djw // CSE 561, Spring 2010, L10

Diversion: TCP SYN cookies

o Goal is for server to keep no client Server
unnecessary state to be as Syn
robust as possible ' Sequencey,
« SYN cookie solution: o+
— Instead, make client store state In | gyN * pot
response to SYN <
|) ACK, © 4
— Server picks returnseq#y =© 1
that encrypts x

— Gets © +1 from sender; unpacks
to yield x

djw // CSE 561, Spring 2010, L10

TCP Connection Teardown

Web server

FIN. WAIT 1

FIN. WAIT 2
TIME_WAIT |

CLOSED

djw // CSE 561, Spring 2010, L10

FIN

e
F\N

ACk

Web browser

CLOSE_WAIT
LAST ACK

CLOSED

Kinds of Teardown

 FIN

— TIME_WAIT for 2MSL (two times the maximum segment lifetime of
60 seconds) before completing the close

— This is in case the ACK was lost and FIN will be resent

e RST

— Not an orderly connection close
— Server reliably sends data, then RST (unreliable), and moves on
— Client deals with it

djw // CSE 561, Spring 2010, L10

Automatic Repeat Request (ARQ)

Sender Receiver Sender Receiver
M B R
F, rq
3 o
3 @
£ £ =
= = pcK =
\j - B /:,.a
5 US
(@)
£
= ACK

» Packets can be corrupted or lost. How do we add reliability?
e Acknowledgments (ACKSs) and retransmissions after a timeout
* ARQ is generic name for protocols based on this strategy

djw // CSE 561, Spring 2010, L10

The Need for Sequence Numbers

Sender Receiver Sender Receiver

Timeout
Timeout

pcK

Timeout

Timeout

* In the case of ACK loss (or poor choice of timeout) the
receiver can’t distinguish this message from the next

— Need to understand how many packets can be outstanding and number
the packets; here, a single bit will do

djw // CSE 561, Spring 2010, L10

Stop-and-Wait

Sender Receiver
0
e Only one outstanding 0 —
packet at a time ‘ 1
P 1 —
e Also called alternating bit 0
protocol 0 =
1
1 —

djw // CSE 561, Spring 2010, L10

Limitation of Stop-and-Wait

[[
» »

* Lousy performance if wire time << prop. delay
— How bad? You do the math

e \Want to utilize all available bandwidth
— Need to keep more data “in flight”
— How much? Remember the bandwidth-delay product?

e Leads to Sliding Window Protocol

djw // CSE 561, Spring 2010, L10

Sliding Window Protocol

 There is some maximum number of un-ACK’ed frames the sender is
allowed to have in flight

— We call this “the window size”
— Example: window size = 2

Sender Receiver

Once the window is
full, each ACK’ed
frame allows the sender
o send one more frame

Time

djw // CSE 561,
Spring 2010, L10

Sliding Window: Sender

« Assign sequence number to each frame (SeqNum)

« Maintain three state variables:
— send window size (SWS)
— last acknowledgment received (LAR)
— last frame sent (LFS)

 Maintain invariant: LFS - LAR <= SWS

<SWS

f f

LAR LFS

 Advance LAR when ACK arrives
o Buffer up to SWS frames

djw // CSE 561,
Spring 2010, L10

Sliding Window: Receiver

Maintain three state variables
— receive window size (RWS)
— largest frame acceptable (LFA)
— last frame received (LFR)

 Maintain invariant: LFA - LFR <= RWS

< RWS

! }
LFR LFA

* Frame SeqNum arrives:
— If LFR <SegNum < LFA = accept + send ACK
— If SeqNum < LFR or SegNum > LFA = discard

* Send cumulative ACKS — send ACK for largest frame such that all frames less
than this have been received

djw // CSE 561,
Spring 2010, L10

Flow Control

o Sender must transmit data no faster than it can be consumed
by the receiver
— Receiver might be a slow machine
— App might consume data slowly

e Implement by adjusting the size of the sliding window used at
the sender based on receiver feedback about available buffer
space

djw // CSE 561, Spring 2010, L10

Example — Exchange of Packets

T=2

T=3

T=6

djw // CSE 561, Spring 2010, L10

TSR

ACK=2; WIN=3

—— sk

CK=3', W\N=2

A
SEQ=3

Stall due to T-4+’

flow control " ﬁ<

here —— T=5 ACK=4; WIN=1

Receiver has
buffer of size 4
and application
doesn’t read

Example — Buffer at Sender

T=1 (1] 2

3

= [

3

T=4

djw // CSE 561, Spring 2010, L10

B =acked

[=sent

—advertised

TCP Header Format

e Sequence, Ack numbers used for the sliding window

e AdvertisedWindow used for flow control
0 4 10 16 31

SrcPort DstPort

SeqguenceNum

Acknowledgment

HdrLen 0 Flags AdvertisedWindow

Checksum UrgPtr
Options (variable)

Data

djw // CSE 561, Spring 2010, L10

Digital Fountain discussion

* What is the content distribution goal?

e What is the scaling problem with using retransmissions?
e What is the tradeoff between Tornado and RS codes?
 How much does interleaving help?

o What is layered multicast?

djw // CSE 561, Spring 2010, L10

