CSE561 – Quality of Service I

David Wetherall djw@cs.washington.edu

QOS I (Fair Queueing)

- Focus:
 - How to provide "better than best effort"
- Leftovers: TCP
- Application needs
- Traffic shaping
- Fair queueing

TCP

- 88, Tahoe, slow-start and cong avoid, the original fixes
- 90, Reno, fast retransmit & fast recovery
 - recover from loss using duplicate ack signals w/o timeout
- 94, Vegas, experiment with delay-based signaling
- 95, NewReno, improved Reno for multiple losses
- 96, TCP with SACK, cleaner/better then NewReno
- '02 XCP, example of host and router control theory redesign
- >05 TCP BIC/CUBIC (Linux), modified cong avoid for LFN
- >05 Compound TCP (Microsoft), delay and loss based
- 06, TCP FAST, delay based, control theory

TCP w/ Slow Start +Cong Avoid (Tahoe)

TCP Tahoe + Fast Retransmit

TCP Reno (Tahoe + F.Retrans/F.Rec)

QOS Framework

- QOS gives "stronger than best effort guarantees". We need:
- 1. understand what network services applications need
 - \rightarrow network services
- 2. characterize application traffic entering the network
 - \rightarrow Flow specificiations or SLAs
- 3. decide whether to accept offered traffic
 - \rightarrow admission control
- 4. differentially process traffic in the network
 - \rightarrow packet scheduling

Applications Needs

- May vary in terms of (typically) Bandwidth, Delay, Jitter, Loss
 - VoIP: low bandwidth and low delay/jitter, some loss OK
 - P2P: high bandwidth, high delay/jitter OK, no loss (transport)
 - Streaming: adequate bandwidth, high delay OK, jitter bad
- Leads to notion of network services:
 - Constant bit rate (CBR) real-time, e.g., VoIP
 - Variable bit rate (VBR) real-time, e.g., videoconference
 - Variable bit rate non-real-time, streaming movie
 - Available bit rate, e.g., P2P

Specifying Bandwidth Needs

• Problem: Many applications have variable bandwidth demands

• Same average, but very different needs over time. One number. So how do we describe bandwidth to the network?

Token Buckets

- Common, simple descriptor
- Use tokens to send bits
- Average bandwidth is R bps
- Maximum burst is B bits

Network Roadmap – Various Mechanisms

FIFO with Drop Tail	Classic Best Effort
FIFO with RED	Congestion Avoidance
Weighted Fair Queuing	Per Flow Fairness
Differentiated Services	Aggregate Guarantees
Integrated Services	Per Flow Guarantees

Fairer Queuing: Round Robin (Nagle)

Weighted Fair Queuing (WFQ)

- Want to share bandwidth
 - At the "bit" level, but in reality must send whole packets
- Approximate with <u>finish</u> times for each packet
 - finish (F) = arrive + length*rate; rate depends on # of flows
 - Send in order of finish times, except don't preempt (stop) transmission if a new packet arrives that should go first

• More generally, assign <u>weights</u> to queues (Weighted FQ, WFQ)

Deficit Round Robin (Varghese, 95)

- WFQ has complexity O(log N) to pick which packet goes next
 - Disadvantage for high speed implementation
- Deficit Round Robin is a O(1) approximation
 - Fix the number of queues
 - Give them a quantum of service in round robin order
 - Skip queues until they build up enough credit for a large packet
- Gives both efficiency and fairness