CSE561 — Application Transports

David Wetherall
djw@cs.washington.edu

Application use of the network

 Focus:
— What transports do real applications need?

e Transports, Applications Application

e HTTP as example Presentation

Session

Transport

Network

Data Link

Physical

djw // CSE 561, Spring 2010, L14

Clark Discussion

What are the contributions of the paper?
— Which is/was the more lasting?

Why is predicted service useful vs. guaranteed service?
— What apps want which one?

What iIs the overall architecture?
— What is novel about it?

How does admission control work?
— What is the service interface?

djw // CSE 561, Spring 2010, L14

Transports we have

« TCP
— Reliable, congestion controlled bytestream

« UDP

— Unreliable individual short messages
— Error detection if you are nice
— (Packets!)

djw // CSE 561, Spring 2010, L14

Example applications and their needs

* Video conferencing
— Unreliable video stream (congestion friendly)
* Video-on-demand (streaming media)
— Reliable bytestream with buffered playback (congestion control)
e DNS
— Request / reply
— Reliable, short messages
« Web
— Series of related request / replies
— Reliable, variable length messages (congestion control)

Not exactly a great match to what we have ...

djw // CSE 561, Spring 2010, L14

Web Protocol Stacks

client server
user Firefox request apache
space HTTP - > HTTP
response
TCP TCP
OS P
kernel IP
Ethernet Ethernet

e To view the URL http://server/page.html the client makes a TCP
connection to port 80 of the server, by it’s IP address, sends the
HTTP request, receives the HTML for page.html as the response,
repeats the process for inline images, and displays it.

djw // CSE 561, Spring 2010, L14

HTTP Request/Response

djw // CSE 561, Spring 2010, L14

User Server

TCF syn

TGP syn+ack -
TGP ack b
HTTP get file

L] w 1.'_‘_-

TCF DaTA

file rec™d
FI:UKE 3 HTTP File Transfer

1 BRTT channel (OPEMN

5 KTT send reguest

.5 KTT file starts to arrive
Ftrans time to transmit the file
2 RTT 4 Firans

= time to get a file in HTTP

Simple HTTP 1.0

GET index.html

GET ad.gif

GET logo.gif

<

« HTTP is atiny, text-based language

 The GET method requests an object

e There are HTTP headers, like “Content-Length:”, etc.

e Try “telnet server 80” then “GET index.html HTTP/1.0”
— Other methods: POST, HEAD,... google for details

djw // CSE 561, Spring 2010, L14

HTTP Request/Response in Action

Cliant opens

Client

TCP conmection

e ATT ovver e SYN
Cliant sends T ——
HTTP reguest
for HTL ACK
. —— DAT —
~2RTT = FIN
Cliens parses
HTMI.
Client opens T ——
TCF connection ACK
Cliant sands T ——
HTTP reguest
for mage
- ALK
S | Fn_r l— D":"T -
Image begins ¢
to arrive

Server reads
y from dizk

Server reads
from disk

Figure 3-1: Packet exchanges and round-trip times for HTTP

Problem is that:

— Web pages are made up of many
files. Most are very small (< 10k)

— files are mapped to connections
For each file
— Setup/Teardown
« Time-Wait table bloat
— 2RTT “first byte” latency

— Slow Start+ AIMD Congestion
Avoidance

The goals of HTTP and TCP
protocols are not aligned!

TCP Behavior for Short Connections

RTT=70ms

=

& T T
o-On Oy

| Ze+lB = 3 - -0 Window = 32KEB, M35 = 1460

Z & & Window 3IKB, MSS - 536 o e -
? le4)f — #—& Window = SKB o g — “." g —
¥ ol \ 5. g
= RO) @
= i *."H [gumﬁ
E FA | . ~
5 ,-"’f' Py L *eoa .
?;' MM ___,‘--"" *&H*__‘,M — Ay PGP
=
= 0N |
.::I 1Ll 1Ll 1Ll 1 I
D 10 NI Lo+ le+07

Connection length {bytes)
Figure 3-X: Throwghpot vs. connection length, RTT = 70 msec
Figure 3-1 shows that. in the remote case. wsing a TCP connection io fransfer only 2 Khytes resulls in a
throughput less than 10¥% of best-case value, Even a 20 Kbyie iransfer achieves only about 50% of the throughput
avallable with & reasonable window size. This reduced throughpot translates into increased latency for document
retricval. The figure also shows that. for this 70 msec RTT, use of too small a window size limits the throoghpat na
maiter how many bytes are transferred.

djw // CSE 561, Spring 2010, L14

HTTP1.1: Persistent Connections

GET index.html GET ad.gif ...

>

e Idea: Use one TCP connection for multiple page downloads (or just
HTTP methods)

e (Q:What are the advantages?
* Q:What are the disadvantages?
— Application layer multiplexing

djw // CSE 561, Spring 2010, L14

HTTP/1.1

Client Server

wee- D ATT weeem

FTTP roqusst | DT

request —_—
for HTI'-.-'IE ™1 Server reads
1 from disk

1 ATT - Al
Client parses
HTML ACK

Client sands | ——

HTTP requsest DAT ——— _

for mage Server reads
| ¥ fren dizk

e BATT oo ba—DAT —

Image begins
to arrive 4 L

 Also pipelining: send multiple request before responses done

djw // CSE 561, Spring 2010, L14

Effect of Persistent HTTP

|
i
3 s &— Old protocol a7
= W - - - - B Long-lived connections L :
:-' il & 4 Mew protocal with pipelining & —& =
3 a— . -
] -
A - [| -
» 4 -~ | & F s
5 . - i
R S AT SRR E
31) R
= g
L] I
0 7 4 fi 5 LH]
Mumber of inlined images
5 1
= - o—F
= 2 23 (ld prodocol - .-m
a 13 | B Long-lived connections P . &
4 & — — & Mow protocol with pipclining . L a
-) ﬁ R]
15 - Towo T

--.1_._!-:'._ -
10 b -

5 -'.'i't N
T

N - - - -
[z 4 fi A
Number of inlined images

M tw ok Latency

ure H-2: L .11-.|J ‘ies For a remte server, image size = 43566 bytes

djw // CSE 561, Sprlng 2010, L14

]

Image
Size=2544

Image
Si1ze=45566

