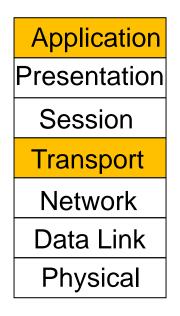
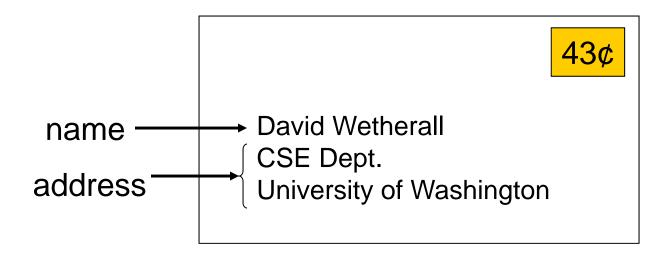
CSE561 – Naming and DNS


David Wetherall djw@cs.washington.edu

SST Discussion


- What are the contributions of the paper?
- How does SST separate reliability & congestion control?
 - What is numbered, acknowledged; compare to TCP
- What does a developer do to implement HTTP/1.1?
- Could we use SST for DNS?
- What's the best way to evaluate SST?

Naming and DNS

- Focus:
 - How do we resolve names to addresses
- Names and addresses
- DNS as a system design3

Names and Addresses

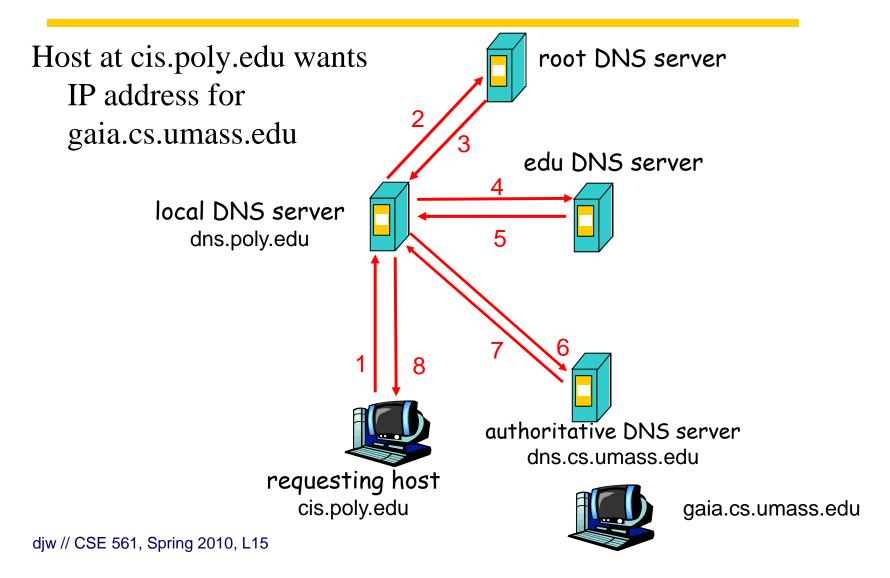
- <u>Names</u> are identifiers for objects/services (high level)
- <u>Addresses</u> are locators for objects/services (low level)
- <u>Resolution</u> is the process of mapping name to address
- But, addresses are really lower-level names; many levels used

Naming in Systems

- Ubiquitous
 - Files in filesystem, processes in OS, pages on the web, ...
- Decouple identifier for object/service from location
 - Hostnames provide a level of indirection for IP addresses
- Key issue is the resolution system
 - Likely to constrain names or addresses to function
 - DNS names are hierarchical, IP addresses constrained by location

Example: Original Hostname System

- When the Internet was really young ...
- Flat namespace
 - Simple (host, address) pairs
- Centralized management
 - Updates via a single master file called HOSTS.TXT
 - Manually coordinated by the Network Information Center (NIC)
- Resolution process
 - Look up hostname in the HOSTS.TXT file


Scaling Problems

- Coordination
 - Between all users to avoid conflicts
- Inconsistencies
 - Between update and distribution of new version
- Reliability
 - Single point of failure
- Performance
 - Competition for centralized resources

Today: Domain Name System (DNS)

- Designed by Mockapetris and Dunlap in the mid 80s
- Namespace is hierarchical
 - Allows much better scaling of data structures
 - e.g., galah.cs.washington.edu
- Namespace is distributed
 - Decentralized administration and access
 - e.g., galah managed by CSE
- Resolution is by query/response
 - With replicated servers for redundancy
 - With heavy use of caching for performance

DNS Lookups / Resolution

Design requirements

- Work well at large scale
- Provide highly available service
- Rapid name resolution
- Serve many organizations

Design Issues

- Scaling up
 - Use hierarchy and replication to spread work over servers
 - Use caching (TTL on replies) to cut down on work
- Reliability
 - Replicated servers
- Performance
 - Caching resolutions
 - Request/reply over UDP, not TCP
 - Replicated servers
- Administration
 - Use hierarchy to carve up namespace; but TLDs are contentious
 - Use local nameservers to relieve client of responsibility

DNS futures

- DNS works great to map hostname to IP!
- What has changed:
 - A static mapping is no longer what many applications want
 - e.g., return "an IP with the content I want"
 - e.g., return "the nearest IP with the content I want"
- This is tied up with CDNs ...