CSE561 – Network Security

David Wetherall djw@cs.washington.edu

Network Security

- Focus:
 - How can protocols be abused?

Application

Presentation

Session

Transport

Network

Data Link

Physical

Take-home exam

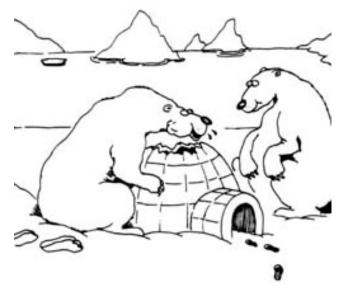
- Available from CSE660 (Mel/Julie) starting Mon 6/7
- Must return to David's office CSE654 by 5pm Fri 6/11
 - Just slide it under the door ...
- 3 hours, design-oriented questions (not like homeworks)
- Open textbook/notes, but no Web or non-course papers
- On the Honor system.
 - Strictly no discussion of any exam material, problems or solutions, with anyone else in the class or out of it. Seriously.

Network security

- Threat model
 - Know what you are trying to stop, under what assumptions
 - Real security is risk management, not mathematics
- Encryption can be used for:
 - Message confidentiality, integrity, authentication
 - With symmetric (secret) and asymmetric (public/private key) methods
- Computers can be compromised
 - Many, many implementation vulnerabilities
- Take a security course!

Two issues

- Administrative boundaries
 - What should we do to secure the boundaries between networks?
 - e.g., one ISP to another, Internet to customer
 - Q: what does IP do for us? A: nothing
- How can protocols be co-opted or otherwise abused?
 - Even when they are implemented correctly; no bugs
 - "Don't think of TCP as a protocol, think of it as an opportunity," StefanSavage
 - e.g., traceroute w/ IP/ICMP, Sting for TCP
 - Can attack or interfere with resource allocation


Administrative boundaries

Firewalls

- Scalable point of defense
- Break/allow connectivity
- Useful, but brittle

ISP boundaries

- Accounting
- Check IP addresses (ingress filtering, e.g., uRPF)
- Filter routes (BGP policy)
- Block "control traffic" with routes and over multiple hops

"Oh hey! I just love these things! ...Crunchy on the outside and a chewy center!" Copyright Gary Larson, 1980. All rights reserved.

Co-opting protocols

- IP (packet format, affects forwarding)
 - Can send anything, anywhere, e.g., spoof source address
 - Leads to packet floods, denial-of-service
 - Amplify with broadcast
- TCP (allocates bandwidth, server resources)
 - Can send or ACK aggressively; other connections pushed aside
 - Can tie up server state (SYN floods and 3-way handshake)
- IP/ICMP (returns error messages)
 - Can trigger unwarranted error messages, concealing source
 - Can tie up host resources (fragments that don't reassemble)
- DNS
 - Can generate fake replies to change host to IP mapping