CSE561 – Multiple Access

David Wetherall djw@cs.washington.edu

How do we share a channel?

• Topics:

- Multiplexing methods
- Statistical multiplexing
- Random access protocols
- Contention-free protocols

Application

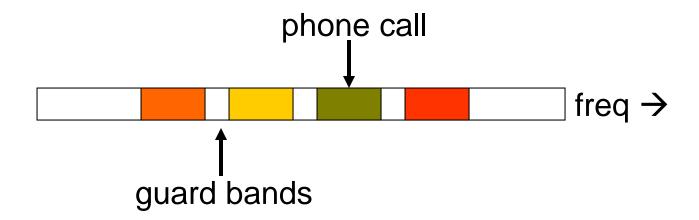
Presentation

Session

Transport

Network

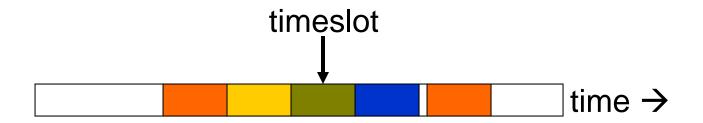
Data Link


Physical

Basic multiplexing methods

- Divide channels over:
 - Time (TDM)
 - Frequency, or wavelength (FDM / WDM)
 - Codes (CDMA)
 - Also spatial for wireless, e.g., directional antenna
- Division permits multiple "users" to share the channel
- Often used in combination
 - E.g., 802.11 uses FDM for 20 MHz channels, then dynamic TDM as stations take turns, then FDM via OFDM within the channel to combat wireless degradations

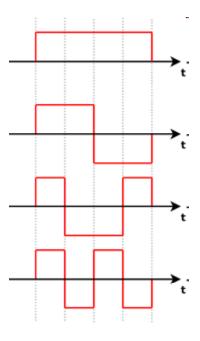
Frequency Division Multiple Access


- Simultaneous transmission in different frequency bands
 - Analog: Radio/TV, AMPS cell phones (800MHz)
 - Also called Wavelength DMA (WDMA) for fiber

"Speaking at different pitches"

Time Division Multiple Access

- Timeslice given frequency band between users
 - Digital: used extensively inside the telephone network
 - T1 (1.5Mbps) is 24 x 8 bits/125us; also E1 (2Mbps, 32 slots)

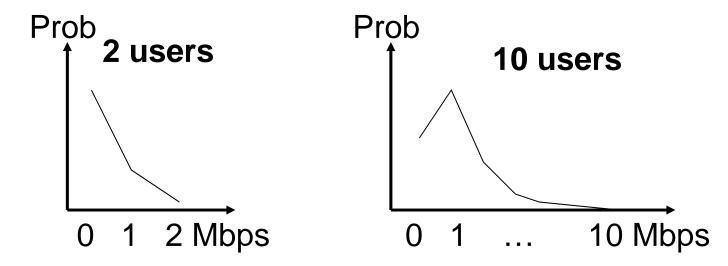


"Speaking at different times"

• Advantage: lower delay; Disadvantage: synchronization

Code Division Multiple Access

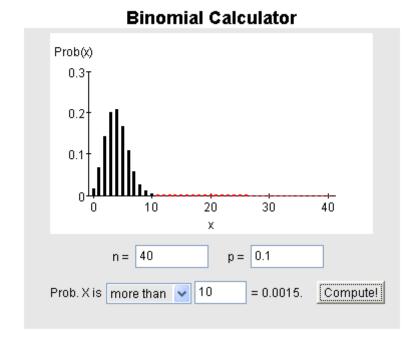
- Give each user a different code (right)
 - Send +ve or -ve code for 1/0
 - All users send at once
 - Uses bandwidth for N users
 - "chip rate" >> data rate
 - Mixes time and frequency
- Codes are orthogonal to each other
 - Can correlate for one code
 - This will ignore the rest
- Widely used for 3G mobile phones


Four "4 chip" orthogonal codes

Statistical Multiplexing

- Static partitioning schemes are not suited to data communications where peak rate >> average rate.
- If we share on demand we can support more users
 - Based on the statistics of their transmissions
 - Occasionally we might be oversubscribed
 - This is called <u>statistical multiplexing</u>
- Statistical multiplexing is heavily used in data networks
 - But only at a high-level (tied to users) this is a poor model for the details of traffic due to heavy-tailed distributions.

Example

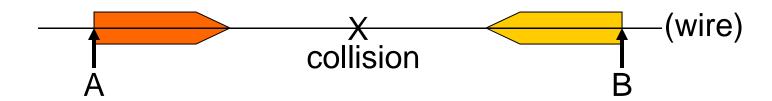

- One user sends at 1 Mbps and is idle 90% of the time.
 - 10 Mbps channel; 10 users if statically allocated

• What are the likely loads if we share on demand?

Example continued

- For 10 users, Prob(need 10 Mbps) = 10^{-10} Not likely!
- For 40 users, Prob(>10 active users) = 0.15%, which is low
- We can support 4X users!
- But: important caveats ...

Random Access Protocols


- Let stations try to send when they have traffic
 - Contention leads to collisions (inefficiency, non-determinism)
- Aloha
- (greedy) Carrier Sense Multiple Access (CSMA)
- (non-greedy) CSMA (p-persistent, CSMA/CA)
- (greedy) CSMA with Collision Detection (CSMA/CD)
- Above with Binary Exponential Backoff
- In increasing order of sophistication and performance

ALOHA

- Wireless links between the Hawaiian islands in the 70s
- Want distributed allocation
 - no special channels, or single point of failure
- Aloha protocol:
 - Just send when you have data!
 - There will be some collisions of course ...
 - Detect errored frames and retransmit a random time later
- Simple, decentralized and works well for low load
 - For many users, analytic traffic model, max efficiency is 18%

Carrier Sense Multiple Access

- We can do better by listening before we send (CSMA)
 - good defense against collisions only if "a" is small (LANs)

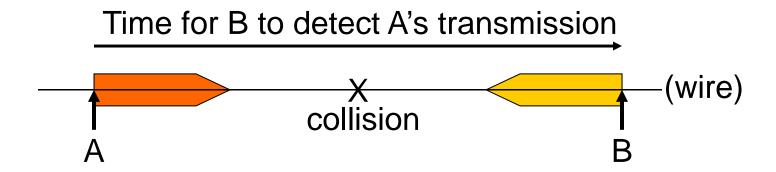
- "a" parameter: number of packets that fit on the wire
 - a = bandwidth * delay / packet size
 - Small (<<1) for LANs, large (>>1) for satellites

What if the Channel is Busy?

• 1-persistent CSMA

- Wait until idle then go for it
- Blocked senders can queue up and collide

non-persistent CSMA


- Wait a random time and try again
- Less greedy when loaded, but larger delay

p-persistent CSMA

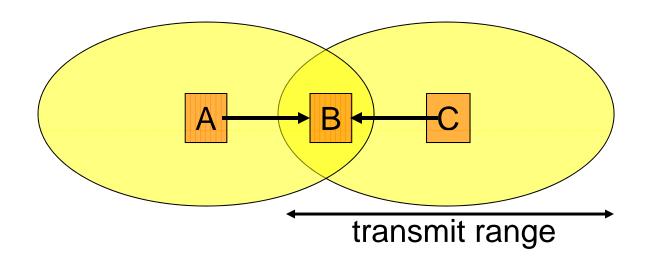
- If idle send with prob p until done; assumed slotted time
- Choose p so p * # senders < 1; avoids collisions at cost of delay
- CSMA/CA ("Collision Avoidance") used in 802.11 is a refinement of p-persistence

CSMA with Collision Detection

• Even with CSMA there can still be collisions. Why?

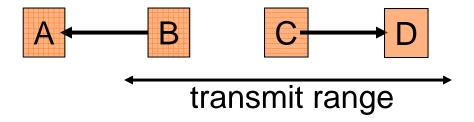
- For wired media we can detect all collisions and abort (CSMA/CD):
 - Requires a minimum frame size ("acquiring the medium")
 - B must continue sending ("jam") until A detects collision

Binary Exponential Backoff

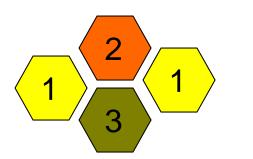

- Build on CSMA to balance average wait with load
 - Become less greedy if there is more contention
- On collision: jam and exponential backoff
 - Jamming: send 48 bit sequence to ensure collision detection
- Backoff:
 - First collision: wait 0 or 1 frame times at random and retry
 - Second time: wait 0, 1, 2, or 3 frame times
 - Nth time (N<=10): wait 0, 1, ..., 2^{N} -1 times
 - Max wait 1023 frames, give up after 16 attempts
- Classic Ethernet is "1-persistent CSMA/CD with BEB"

Wireless Multiple Access

Wireless is more complicated than wired ...

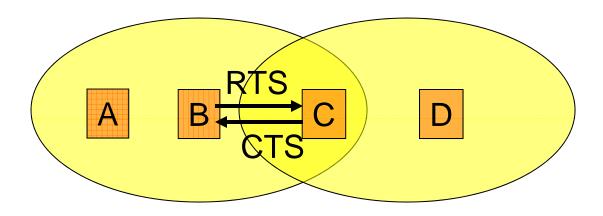

- 1. Cannot detect collisions
 - Transmitter swamps co-located receiver
- 2. Different transmitters have different coverage areas
 - Asymmetries lead to hidden/exposed terminal problems

Hidden Terminals



- A and C can both send to B but can't hear each other
 - A is a hidden terminal for C and vice versa
- CSMA not always ineffective want to sense at receiver

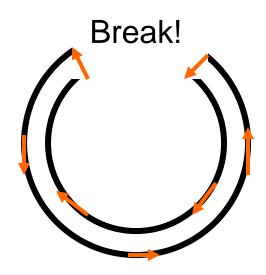
Exposed Terminals



- B, C can hear each other but can safely send to A, D
- Compare to spatial phones:

reuse in cell

Aside: RTS / CTS for hidden terminals


- 1. B stimulates C with Request To Send (RTS)
- 2. A hears RTS and defers to allow the CTS
- 3. C replies to B with Clear To Send (CTS)
- 4. D hears CTS and defers to allow the data
- 5. B sends to C

Contention-free Protocols

- Collisions are the main difficulty with random schemes
 - To improve efficiency/scalability, many schemes grant ongoing bandwidth and use random schemes for request traffic
 - E.g., cable modems, 3G wireless
- Q: Can we avoid collisions altogether?
- A: Yes. By taking turns or with reservations
- More generally, what else might we want?
 - Deterministic service, priorities/QOS, reliability

FDDI (Fiber Distributed Data Interface)

- Roughly a large, fast token ring
 - 100 Mbps and 200km
 - Dual counter-rotating rings for redundancy
 - Complex token holding policies for voice etc. traffic
- Token ring advantages
 - No contention, bounded access delay
 - Support fair, reserved, priority access
- Disadvantages
 - Complexity, reliability, scalability

SSCH discussion

- What are the important factors in the problem?
- What is the main contribution?
- How does it compare to simply using wider channels?
- What synchronization is needed?
- How does the hopping scheme work?
- How does the methodology compare to Maranello?
- How does the algorithm scale with #channels?