
VISIBLE LIGHT NETWORKING WITH QR CODES
A PROJECT REPORT FOR CSE 561

RYDER ZIOLA AND WILLIAM WEBB

1. Motivation and Design Considerations

Telecommunications networks and the internet have enabled many different forms of
communication - email, phone, instant messaging, etc. For most users, the fact that all
of these are mediated by external networks is not important. However, some users, for
instance, human rights activists operating in certain countries, may wish transfer digital
data in a fashion that is anonymous, leaving no identifying traces on either participating
machine nor any electronic record of the communication in the network. Physical storage
media, such as CDs and portable hard drives are possible candidates if mail or an in-
person handoff is allowed, but such media can also carry physical evidence, such as hair
or fingerprints, and also serial numbers or metadata attached to the stored files. Any of
these things could potentially compromise collaborators. Another possibility is to instead
execute file transfers between portable machines in a way that uses no physical media
and does not rely on any telecom network or exchange of addresses. Smart phones are
natural candidates, being portable and increasingly ubiquitous, so for this project, we
attempted to leverage common built-in functionality to create a secure channel with the
desired properties. We note that many smart phones can communicate via IR ports, but
there is always the possibility the that IR transmissions may be intercepted since they are
one dimensional and monochromatic. A remaining feasible possibility is to use camera to
screen communication, which is the approach we adopt.

2. Design Considerations and Challenges

A few other design requirements present themselves immediately. Namely,

• Synchronizing two devices in a precise fashion using a visual channel is difficult to
do, so simplicity and functionality virtually require an asynchronous protocol.

• Most smartphone have their cameras and screens facing in opposite directions, only
one device can communicate at a time, meaning that we wish to avoid using back
channels if at all possible.

• Low screen and camera resolution amplifies the deleterious effects of device move-
ment, making errors and lost packets a foregone conclusion, so error correction and
detection are absolutely required.

1



2 RYDER ZIOLA AND WILLIAM WEBB

• Built in autoexposure can change camera camera performance in response to chang-
ing light levels, complicating the task, especially since the underlying operating
system may not permit manual control of autoexposure functions.

• To get a good view, devices must be close to each other, which requires the camera
to be precisely focused on the screen. This is further complicated by the physical
jitter experienced during handheld operation.

3. Background

3.1. QR Codes. Initial experiments with simple binary screen-to-camera transmission
showed an extreme amount of noise and synchronization problems. We thus switched to
QR codes, which are two dimensional analogues of the well-known bar code. QR codes have
many advantages over simple binary transmission, including higher information density per
displayed screen, low sensitivity to varying lighting conditions and angles, built-in error
correction and detection, and the fact that there are many open source implementations
of QR code readers and generators. Additionally, the average brightness of different QR
codes is very similar, which minimizes changes in the autoexposure mechanism and allows
greater consistency.

3.2. Forward Error Correction. The high level of noise on our channel and the absence
of a back channel means that we needed a very robust way to ensure all packets arrived.
The general idea of Forward Error Correction (especially the Digital Fountain [1], which
inspired part of our protocol) corresponds perfectly to this scenario. Loosely speaking,
forward error correction is the process of taking k packets and transforming them into n
packets (where n > k), each one of which contain enough redundant information so that the
original packets can be reconstructed efficiently from any k of the n redundancy-reinforced
packets. This obviates the need for getting the packets in any particular order or for getting
any particular packet.

4. Implementation

We built our system in a Nexus One smartphone running the Android operating system.
The Nexus One is equipped with and 800X480 display and a 5 megapixel camera. As per
the demands of Android, we wrote the system in Java, borrowing a QR encoding/decoding
library [3] and porting the FEC library described in [2] from C to Java. The FEC library
we used is limited to n = 255, so we must design our protocol to do FEC encoding on only
smalls sets of packets, which we call chunks. At a high level, the algorithm takes a file
to be transferred, breaks it into packets, then divides the packets into chunks, k packets
per chunk, then applies FEC to each chunk, turning it into a set of n packets, each of
which is then appended with a label that tells how many chunks there are total, which
chunk the packets is from, and its index within the packet. Each packet is then encoded
as a QR code. All QR codes are assembled into a list, then the program cycles through
them, displaying each QR code for a set amount of time. The exact sequence of displayed
QR codes is determined by the display protocol in use, something we discuss below. The
program continues cycling until the operator halts it.



VISIBLE LIGHT NETWORKING WITH QR CODES A PROJECT REPORT FOR CSE 561 3

On the receiving side, when activated, the algorithm scans the data stream from the camera.
When it identifies and successfully decodes the first code, it builds a nested hash table that
includes a sub-table for each chunk, then checks the chunk that the packet came from,
depositing the packet it the corresponding sub table. It thereafter continues this process
on each packet successfully decoded. Each subtable will keep accepting new packets (i.e.
those it has not already received) until it has received k unique packets from the same
chunk, at which points it stops accepting and registers as complete. When each subtable is
complete, the algorithm reconstructs each chunk using the FEC library, then assembles all
the reconstructed chunks into a file. It then informs the user that the process is complete.
Physical jitter means the camera loses focus from time to time, so the operator must
occaisionally activate the autofocus mechanism by touching the screen. This requirement
for user intervention necessitates immediate feedback on successful packet capture, so we
programmed the phone to beep every time a code is read and successfully decoded.

5. Performance

Figure 1. Burst characteristics of channel. The vertical axis is unitless
probability, so the graph encodes the probability that the time between the
successful decoding of two consecutive packets is a particular number of
milliseconds. The top graph is for mounted (stabilized) units, the bottom
is for handheld.

5.1. Parameters. The main parameters that need to be fixed are packet size, chunk size k,
encoded chunk size n, and frame cycling rate. For simplicity we consider these parameters
largely orthogonal to each other in terms of their effect on performance, with the obvious
exception of n and k. After roughly optimizing each parameter as we describe below, our
system (while mounted) is able to transfer at roughly 2944 bits per second (368 bytes per
second).



4 RYDER ZIOLA AND WILLIAM WEBB

5.2. n and k. k = 1 is just an inefficient repitition code, so we pick some k > 1. The
ratio k/n is the main determinant of efficiency. A larger k/n implies more efficient use of
the channel, while a smaller k/n results in more flexibility in which packets are received.
Ideally, k would be chosen to contain the entire file, and n would be near infinite, requiring
the receipt of any k packets to reconstruct the file. The practical limits of n=255 and the
cost of generating each QR code means that this must be balanced against the conflicting
demand of maximizing the probability that any cycle through the chunk will transmit
enough packets to reconstruct the data represented by the chunk (which is made higher
with lower k/n). Experiment confirmed our intuition that a k/n of about 1/3 is a good
balance.

5.3. Frame cycling rate. The frame cycling rate is largely determined by the image
capture speed of the camera and the QR-code detection time. Experimentally, we found
the most common delta between received frames to be 380ms (See Figure 1). To avoid
receiving duplicate frames, we fixed our transmission rate at 3fps.

5.4. Packet size. As each packet maps to a single QR code, the packet size determines
the density of information displayed on the screen. The optimal value for this parameter
is directly affected by the combined resolution of the screen, camera, and QR decoding
algorithm, as well as movement introduced by the user. A larger packet size allows for
the transmission of more information, but is less resilient to noise, particularly human
movement. Figure 2 contrasts the throughput achieved at different packet sizes with both
mounted and handheld phones. The roughly linear relationship between packet size and
throughput over the considered range of values does not hold in the handheld case nearly as
well as in the mounted case, presumably due to the additional noise introduced by physical
jitter. Similarly, the channel becomes more bursty (Figure 1) in the handheld condition.
Packets arrive less regularly, though still at multiples of the camera lag + processing time.

5.5. Display Protocols. We tried three different protocols governing the sequence of QR
codes displayed. The naive protocol cycles through packets in order (by chunk). We also
tried interleaving by chunk, in which we display from consecutive chunks, one packet at a
time, until all packets have been shown, and then repeat. The other obvious protocol is one
that displays packets uniformly at random. Surprisingly, the naive protocol behaved best,
having the least divergence from the ideal case (in which all packets are received in one
cycle with no redundant packets) and tying with per-chunk interleaving for the minimum
total number of packets needed to reconstruct the file. The random protocol performed
worst. All tests were performed with mounted units, and we expect that the naive protocol
will increasingly poorly with higher levels of jitter, while the random protocol will remain
largely unaffected.

6. Conclusion

We have shown that an anonymous, traceless visible light channel can be implemented
in a normal smart phone. However, to be practical such a system would need many
additional optimizations. Possible improvements include optimizing QR code decoding



VISIBLE LIGHT NETWORKING WITH QR CODES A PROJECT REPORT FOR CSE 561 5

Figure 2. Throughput vs. packet size. Unsurprisingly, mounted units
achieve better throughput and more predictable behavior. We conjecture
that the rapid decrease in throughput near 4500 bits is primarily due to the
the QR codes for packets of this size becoming so intricate as to go above
the combined resolution of the screen/camera system.

and generation for added speed, display-as-generated functionality for the protocol, and
provision for changing parameters (namely packet size, n, and k) to eliminate the need for
file padding. Also, it would be interesting to develop an interface that can give feedback
on the rate of incoming packets (for adjusting the position of the camera) and the overall
completion simultaneously.

References

[1] J. Byers, M. Luby, M. Mitzenmacher, A Rege, ”A Digital Fountain Approach to Reliable Distribution
of Bulk Data”. SIGCOMM 1998

[2] L. Rizzo, ”Effective erasure codes for reliable computer communication protocols.” Computer Commu-
nication Review 1997.

[3] ZXing (open source QR code library) - http://code.google.com/p/zxing.



6 RYDER ZIOLA AND WILLIAM WEBB

Figure 3. A comparison of the display protocols, showing that the naive
protocol and interleaving by chunk tie for overall efficiency, with random
performing the worst.


