FIRST-ORDER LOGIC

Chapter 8

Outline

- ♦ Why FOL?
- \Diamond Syntax and semantics of FOL
- Fun with sentences
- Wumpus world in FOL

Pros and cons of propositional logic

- SPropositional logic is declarative: pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
- $\ensuremath{ f \odot}$ Propositional logic is compositional: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- (a) Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power (unlike natural language) E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

First-order logic

Whereas propositional logic assumes world contains facts, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries . . .
- Relations: red, round, bogus, prime, multistoried comes between, ... brother of, bigger than, inside, part of, has color, occurred after, owns,
- Functions: father of, best friend, third inning of, one more than, end of

Logics in general

true/false/unknowi degree of belief	facts, objects, relations, times facts	Temporal logic Probability theory
true/false/unknowr true/false/unknowr	facts facts, objects, relations	Propositional logic First-order logic
Commitment	Commitment	
Epistemologica	Ontological	Language

Syntax of FOL: Basic elements

Equality Quantifiers Constants
Predicates
Functions Connectives Variables KingJohn, 2, UCB,... Brother, >,...
Sqrt, LeftLegOf,...

Atomic sentences

Atomic sentence = $predicate(term_1, \dots, term_n)$ or $term_1 = term_2$

Term = $function(term_1, ..., term_n)$ or constant or variable

$$\begin{split} \textbf{E.g.}, & \ Brother(KingJohn, RichardTheLionheart) \\ & > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn))) \end{split}$$

apter 8 7

Models for FOL: Example

Complex sentences

Complex sentences are made from atomic sentences using connectives

$$\neg S$$
, $S_1 \wedge S_2$, $S_1 \vee S_2$, $S_1 \Rightarrow S_2$, $S_1 \Leftrightarrow S_2$

E.g. $Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn) > (1, 2) <math>\lor \le (1, 2) \land \neg > (1, 2)$

Sibling(Richar)

Truth example

Consider the interpretation in which $Richard \rightarrow Richard$ the Lionheart $John \rightarrow$ the evil King John

 $Brother \rightarrow$ the brotherhood relation

Under this interpretation, Brother(Richard, John) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

Truth in first-order logic

Sentences are true with respect to a model and an interpretation

Model contains ≥ 1 objects (domain elements) and relations among them

Interpretation specifies referents for constant symbols → objects predicate symbols → relations function symbols → functional relations

An atomic sentence $predicate(term_1,\dots,term_n)$ is true iff the objects referred to by $term_1,\dots,term_n$ are in the relation referred to by predicate

Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating models

We can enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to ∞ For each k-ary predicate P_k in the vocabulary For each possible k-ary relation on n objects For each constant symbol C in the vocabulary For each choice of referent for C from n objects ...

Computing entailment by enumerating FOL models is not easy!

Universal quantification

```
Everyone at Berkeley is smart:
                                                            \forall \langle variables \rangle \ \langle sentence \rangle
```

At(x, Berkeley) $\Rightarrow Smart(x)$

 $\forall x \;\; P \quad \text{is true in a model } m \; \text{iff} \; P \; \text{is true with} \; x \; \text{being}$ each possible object in the model

 ${f Roughly}$ speaking, equivalent to the conjunction of instantiations of P

```
 \begin{array}{l} (At(KingJohn,Berkeley) \Rightarrow Smart(KingJohn)) \\ (At(Richard,Berkeley) \Rightarrow Smart(Richard)) \\ (At(Berkeley,Berkeley) \Rightarrow Smart(Berkeley)) \end{array}
```

common mistake to avoid

```
Typically,
 \Downarrow
is the main connective with \forall
```

Common mistake: using \wedge as the main connective with \forall :

 $\forall x \ At(x, Berkeley) \land Smart(x)$

means "Everyone is at Berkeley and everyone is smart"

Existential quantification

```
\exists \langle variables \rangle \ \langle sentence \rangle
```

Someone at Stanford is smart:

 $At(x, Stanford) \wedge Smart(x)$

some possible object in the model $\exists x \ P$ is true in a model m iff P is true with x being

 ${f Roughly}$ speaking, equivalent to the disjunction of instantiations of P

 $(At(KingJohn, Stanford) \land Smart(KingJohn)) \\ (At(Richard, Stanford) \land Smart(Richard)) \\ (At(Stanford, Stanford) \land Smart(Stanford))$

Another common mistake to avoid

Typically, \wedge is the main connective with \exists

Common mistake: using ⇒ as the main connective with \exists :

 $\exists x \ At(x, Stanford) \Rightarrow Smart(x)$

is true if there is anyone who is not at Stanford!

Properties of quantifiers

```
\forall \, y
  is the same as \forall\,y\,\,\,\forall\,x
 (why??)
```

 $\exists x \ \exists y$ is the same as $\exists y \exists x \pmod{\frac{why??}{}}$

 $\exists x \ \forall y$ is **not** the same as $\forall y \ \exists x$

 $\exists x \ \forall y \ Loves(x,y)$

"There is a person who loves everyone in the world"

 $\forall y \exists x \ Loves(x,y)$

"Everyone in the world is loved by at least one person"

Quantifier duality: each can be expressed using the other

 $\forall x \; Likes(x, IceCream)$

 $\neg \exists x \ \neg Likes(x, IceCream)$

 $\exists x \; Likes(x, Broccoli)$ $\neg \forall x \ \neg Likes(x, Broccoli)$

Fun with sentences

Brothers are siblings

Fun with sentences

Brothers are siblings

 $\forall x,y \ Brother(x,y)$ \Downarrow Sibling(x,y).

"Sibling" is symmetric

Fun with sentences

Brothers are siblings

 $\forall x, y \; Brother(x, y)$ \Downarrow Sibling(x, y).

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

Fun with sentences

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow$ Sibling(x, y).

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

 $\forall x,y \;\; Mother(x,y) \;\Leftrightarrow\; (Female(x) \land Parent(x,y)).$

A first cousin is a child of a parent's sibling

Brothers are siblings

Fun with sentences

 $\forall x, y \; Brother(x, y) \Rightarrow$ Sibling(x, y).

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

 $\forall \, x,y \;\; Mother(x,y) \; \Leftrightarrow \; (Female(x) \land Parent(x,y)).$

A first cousin is a child of a parent's sibling

Parent(ps, y) $\forall x,y \;\; FirstCousin(x,y) \;\; \Leftrightarrow \;\; \exists \, p,ps \;\; Parent(p,x) \land Sibling(ps,p) \land \\$

Equality

 $term_1=term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object

E.g., $\ 1=2$ and $\forall x \ \times (Sqrt(x),Sqrt(x))=x$ are satisfiable 2=2 is valid

 $\forall x,y \; Sibling(x,y) \; \Leftrightarrow \; [\neg(x=y) \land \exists m,f \; \neg(m=f) \land \\ Parent(m,x) \land Parent(f,x) \land Parent(m,y) \land Parent(f,y)]$

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at $t=5\colon$

 $Ask(KB, \exists a \ Action(a, 5))$ Tell(KB, Percept([Smell, Breeze, None], 5))

l.e., does KB entail any particular actions at t=5?

Answer: Yes, $\{a/Shoot\}$ ← substitution (binding list)

 $S\sigma$ denotes the result of plugging σ into S; e.g., S=Smarter(x,y)Given a sentence S and a substitution σ ,

$$\begin{split} \sigma &= \{x/Hillary, y/Bill\} \\ S\sigma &= Smarter(Hillary, Bill) \end{split}$$

Ask(KB,S) returns some/all σ such that $KB \models S\sigma$

Knowledge base for the wumpus world

"Perception"

 $\forall b, g, t \ Percept([Smell, b, g], t) \Rightarrow Smelt(t)$ $\forall s, b, t \ Percept([s, b, Glitter], t) \Rightarrow AtGold(t)$

 $\mathsf{Reflex:} \ \forall t \ \mathit{AtGold}(t) \ \Rightarrow \ \mathit{Action}(\mathit{Grab}, t)$

Reflex with internal state: do we have the gold already?

Holding(Gold,t) cannot be observed $\forall t \ AtGold(t) \land \neg Holding(Gold, t) \Rightarrow$ Action(Grab, t)

 \Rightarrow keeping track of change is essential

Deducing hidden properties

Properties of locations:

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect

 $\forall y \ Breezy(y) \Rightarrow \exists x \ Pit(x) \land Adjacent(x,y)$

Causal rule—infer effect from cause

 $\forall x,y \; Pit(x) \land Adjacent(x,y) \; \Rightarrow \;$ Breezy(y)

Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy

Definition for the Breezy predicate:

 $\forall y \ Breezy(y) \Leftrightarrow$ $[\exists x \ Pit(x) \land Adjacent(x,y)]$

Keeping track of change

Facts hold in situations, rather than eternally E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL: E.g., Now in Holding(Gold, Now) denotes a situation Adds a situation argument to each non-eternal predicate

Situations are connected by the Result function Result(a,s) is the situation that results from doing a in s

Describing actions I

 $\forall s \ AtGold(s) \Rightarrow Holding(Gold, Result(Grab, s))$ "Effect" axiom—describe changes due to action

"Frame" axiom—describe non-changes due to action

 $\forall s \; HaveArrow(s) \Rightarrow HaveArrow(Result(Grab, s))$

Frame problem: find an elegant way to handle non-change (a) representation—avoid frame axioms

Qualification problem: true descriptions of real actions require endless caveats-(b) inference—avoid repeated "copy-overs" to keep track of state

Ramification problem: real actions have many secondary consequences what if gold is slippery or nailed down or ...

what about the dust on the gold, wear and tear on gloves,

Describing actions II

Successor-state axioms solve the representational frame problem

Each axiom is "about" a predicate (not an action per se):

P true afterwards [an action made P true

< \$ P true already and no action made P false]

For holding the gold:

 $\forall\, a,s \;\; Holding(Gold,Result(a,s)) \;\Leftrightarrow \\ [(a = Grab \land AtGold(s))$ $\vee (Holding(Gold, s) \wedge a \neq Release)]$

Making plans

Initial condition in KB:

 $At(Agent, [1, 1], S_0) \\ At(Gold, [1, 2], S_0)$

Query: $Ask(KB, \exists s \ Holding(Gold, s))$

i.e., in what situation will I be holding the gold?

 $\label{eq:Answer: and Result} \mbox{Answer: } \{s/Result(Grab, Result(Forward, S_0))\} \\ \mbox{i.e., go forward and then grab the gold}$

is the only situation described in the $\ensuremath{\mathsf{KB}}$ This assumes that the agent is interested in plans starting at S_0 and that S_0

Making plans: A better way

Represent plans as action sequences $[a_1, a_2, \dots, a_n]$

PlanResult(p,s) is the result of executing p in s

Then the query $Ask(KB,\exists p\ Holding(Gold,PlanResult(p,S_0)))$ has the solution $\{p/[Forward,Grab]\}$

Definition of PlanResult in terms of Result:

 $\forall s \ PlanResult([],s) = s \\ \forall a,p,s \ PlanResult([a|p],s) = PlanResult(p,Result(a,s))$

Planning systems are special-purpose reasoners designed to do this type of inference more efficiently than a general-purpose reasoner $\,$

Summary

First-order logic:

- objects and relations are semantic primitives
 syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:

- conventions for describing actions and change in FOL
 can formulate planning as inference on a situation calculus KB