UNCERTAINTY

Chapter 13

Outline

- \Diamond Uncertainty
- \Diamond Probability
- \Diamond Syntax and Semantics
- \Diamond Inference
- \Diamond Independence and Bayes' Rule

$\underline{\text{Uncertainty}}$

Let action $A_t =$ leave for airport t minutes before flight

Will A_t get me there on time?

Problems:

- partial observability (road state, other drivers' plans, etc.)
 noisy sensors (KCBS traffic reports)
 uncertainty in action outcomes (flat tire, etc.)
 immense complexity of modelling and predicting traffic

- Hence a purely logical approach either 1) risks falsehood: " A_{25} will get me there on time"
- or 2) leads to conclusions that are too weak for decision making:

 "A25 will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc.

 $(A_{1440}$ might reasonably be said to get me there on time but I'd have to stay overnight in the airport \ldots)

Methods for handling uncertainty

Default or nonmonotonic logic:

Assume my car does not have a flat tire

Assume A_{25} works unless contradicted by evidence

Issues: What assumptions are reasonable? How to handle contradiction?

Rules with fudge factors:

 $A_{25} \mapsto_{0.3} AtAirportOnTime$ $Sprinkler \mapsto_{0.99} WetGrass$ $WetGrass \mapsto_{0.7} Rain$

Issues: Problems with combination, e.g., Sprinkler causes Rain??

Probability

Given the available evidence, $A_{25} \mbox{ will get me there on time with probability } 0.04$ Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

(Fuzzy logic handles degree of truth NOT uncertainty e.g., WetGrass is true to degree 0.2)

Chapter 13

Probability

Probabilistic assertions summarize effects of

ignorance: lack of relevant facts, initial conditions, etc. laziness: failure to enumerate exceptions, qualifications, etc

Subjective or Bayesian probability:

Probabilities relate propositions to one's own state of knowledge

e.g., $P(A_{25}|\mathrm{no}\ \mathrm{reported}\ \mathrm{accidents}) = 0.06$

(but might be learned from past experience of similar situations) These are \mathbf{not} claims of a "probabilistic tendency" in the current situation

Probabilities of propositions change with new evidence: e.g., $P(A_{25}|{
m no~reported~accidents},~{
m 5~a.m.})=0.15$

(Analogous to logical entailment status $KB \models \alpha$, not truth.)

Making decisions under uncertainty

Suppose I believe the following:

```
P(A_{1440} 	ext{ gets me there on time}|\dots)
                    P(A_{120} \ {
m gets} \ {
m me} \ {
m there} \ {
m on} \ {
m time}
                                                 P(A_{90} \ {
m gets} \ {
m me} \ {
m there} \ {
m on} \ {
m time}|
                                                                            P(A_{25} 	ext{ gets me there on time}|\dots
   \| \cdot \| \cdot \| \cdot \| \cdot \|
                           0.95
                                                    0.70
                                                                              0.04
     0.9999
```

Which action to choose?

Depends on my preferences for missing flight vs. airport cuisine, etc.

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory

Probability basics

Begin with a set Ω —the sample space

e.g., 6 possible rolls of a die.

 $\in \Omega$ is a sample point/possible world/atomic event

with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t. A probability space or probability model is a sample space

$$0 \le P(\omega) \le 1$$

$$\sum_{\omega} P(\omega) = 1$$

$$\sum_{\omega} P(\omega) =$$

e.g.,
$$P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6$$
.

An event A is any subset of Ω

$$P(A) = \sum_{\{\omega \in A\}} P(\omega)$$

E.g.,
$$P(\text{die roll} < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2$$

Random variables

reals or Booleans A random variable is a function from sample points to some range, e.g., the

e.g., Odd(1) = true.

P induces a probability distribution for any r.v. X:

$$P(X = x_i) = \sum_{\{\omega: X(\omega) = x_i\}} P(\omega)$$

e.g.,
$$P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2$$

Propositions

where the proposition is true Think of a proposition as the event (set of sample points)

Given Boolean random variables A and B:

event $a \wedge b = \text{points}$ where $A(\omega) = true$ and $B(\omega) = true$ event $\neg a = \mathsf{set}$ of sample points where $A(\omega) = false$ event a= set of sample points where $A(\omega)=true$

Often in Al applications, the sample points are defined by the values of a set of random variables, i.e., the sample space is the Cartesian product of the ranges of the variables

false, or $a \wedge$

With Boolean variables, sample point = propositional logic model

Proposition = disjunction of atomic events in which it is true

 $\begin{aligned} \mathbf{e.g.,} \ & (a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b) \\ \Rightarrow & P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b) \end{aligned}$

Why use probability?

probabilities The definitions imply that certain logically related events must have related

E.g.,
$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$

de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.

Syntax for propositions

Propositional or Boolean random variables

e.g., Cavity (do I have a cavity?)

Cavity = true is a proposition, also written cavity

Discrete random variables (finite or infinite)

e.g., Weather is one of $\langle sunny, rain, cloudy, snow \rangle$ Weather = rain is a proposition

Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)

e.g., Temp=21.6; also allow, e.g., Temp<22.0.

Arbitrary Boolean combinations of basic propositions

Prior probability

Prior or unconditional probabilities of propositions

correspond to belief prior to arrival of any (new) evidence e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72

Probability distribution gives values for all possible assignments:

 $\mathbf{P}(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle$ (normalized, i.e., sums to 1)

probability of every atomic event on those r.v.s (i.e., every sample point) $P(Weather, Cavity) = \texttt{a} \ 4 \times 2 \ \texttt{matrix} \ \texttt{of values}.$ Joint probability distribution for a set of r.v.s gives the

 $Cavity = false | 0.576 \quad 0.08 \quad 0.064 \quad 0.08$
 sunny rain cloudy snow

 0.144
 0.02
 0.016
 0.02

distribution because every event is a sum of sample points Every question about a domain can be answered by the joint

Probability for continuous variables

Express distribution as a parameterized function of value: $P(X=x)=U[18,26](x)=\mbox{uniform density between }18\mbox{ and }26$

Here P is a density; integrates to 1. $P(X\!=\!20.5)=0.125 \text{ really means}$

$$\lim_{dx \to 0} P(20.5 \le X \le 20.5 + dx)/dx = 0.125$$

Gaussian density

$$P(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$$

Conditional probability

Conditional or posterior probabilities

P(Cavity|Toothache) = 2-element vector of 2-element vectors)

(Notation for conditional distributions:

e.g., P(cavity|toothache) = 0.8i.e., given that toothache is all I know NOT "if toothache then 80% chance of cavity"

If we know more, e.g., cavity is also given, then we have

but is not always useful Note: the less specific belief remains valid after more evidence arrives, P(cavity|toothache, cavity) =

New evidence may be irrelevant, allowing simplification, e.g.,

P(cavity|toothache, 49ersWin) = P(cavity|toothache) = 0.8 This kind of inference, sanctioned by domain knowledge, is crucial

Conditional probability

Definition of conditional probability:

$$P(a|b) = \frac{P(a \wedge b)}{P(b)} \text{ if } P(b) \neq 0$$

Product rule gives an alternative formulation:
$$P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$$

(View as a 4×2 set of equations, not matrix mult.) A general version holds for whole distributions, e.g., $\mathbf{P}(Weather, Cavity) = \mathbf{P}(Weather|Cavity)\mathbf{P}(Cavity)$

Chain rule is derived by successive application of product rule:
$$\mathbf{P}(X_1,\dots,X_n) = \mathbf{P}(X_1,\dots,X_{n-1}) \ \mathbf{P}(X_n|X_1,\dots,X_{n-1}) \\ = \mathbf{P}(X_1,\dots,X_{n-2}) \ \mathbf{P}(X_{n_1}|X_1,\dots,X_{n-2}) \ \mathbf{P}(X_n|X_1,\dots,X_{n-1})$$

$$= \prod_{i=1}^{n} \mathbf{P}(X_i|X_1,\ldots,X_{i-1})$$

Chapter 13

Inference by enumeration

Start with the joint distribution:

¬ cavity	cavity			
.016	.108	catch	toot	
.064	.108 .012	¬ catch catch	toothache	
.144	.072	catch	¬ toc	
.144 .576	.008	\neg catch	¬ toothache	

For any proposition $\phi,$ sum the atomic events where it is true: $P(\phi) = \sum_{\omega\omega \models \phi} P(\omega)$

Inference by enumeration

Start with the joint distribution:

	toot	toothache	¬ too	¬ toothache
	catch	¬ catch catch	catch	$\neg catch$
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	144 .576

For any proposition ϕ , sum the atomic events where it is true: $P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$

$$P(\phi) = \sum_{\omega : \omega \models \phi} P(\omega)$$

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Inference by enumeration

Start with the joint distribution:

ı			
$\neg cavitv$	cavity		
.016 .064	.108	catch	toot
.064	.108 .012	¬ catch catch	toothache
.144	.072	catch	¬ toc
.576	.008	\neg catch	¬ toothache

For any proposition ϕ , sum the atomic events where it is true: $P(\phi) = \sum_{\omega \in \Phi} P(\omega)$

 $\lim_{\omega \models \phi} P(\omega)$

 $P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$

Chapter 13

Inference by enumeration

Start with the joint distribution:

¬ cavity	cavity		
.016 .064	.108	catch	toot
.064	.108 .012	¬ catch catch	toothache
.144	.072	catch	¬ toc
.144 .576	.072 .008	\neg catch	¬ toothache

Can also compute conditional probabilities:

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$

$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

Chapter 13

Normalization

\neg cavity	cavity		
.016 .064	.108	catch	toot
.064	.012		toothache
.144	.072	¬ catch catch	¬ to
144 .576	.072 .008	$\iota \mid \neg catch$	¬ toothache

Denominator can be viewed as a normalization constant lpha

 $\mathbf{P}(Cavity|toothache) = \alpha \, \mathbf{P}(Cavity,toothache)$ $= \alpha (0.12, 0.08) = (0.6, 0.4)$ = α [P(Cavity, toothache, catch) + P(Cavity, toothache, ¬catch)] = α [$\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle$]

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Inference by enumeration, contd.

Let ${f X}$ be all the variables. Typically, we want given specific values ${\bf e}$ for the evidence variables ${\bf E}$ the posterior joint distribution of the query variables \boldsymbol{Y}

Let the hidden variables be $\mathbf{H} = \mathbf{X} - \mathbf{Y}$

hidden variables: Then the required summation of joint entries is done by summing out the

$$\mathbf{P}(\mathbf{Y}|\mathbf{E}=\mathbf{e}) = \alpha \mathbf{P}(\mathbf{Y},\mathbf{E}=\mathbf{e}) = \alpha \Sigma_{\mathbf{h}} \mathbf{P}(\mathbf{Y},\mathbf{E}=\mathbf{e},\mathbf{H}=\mathbf{h})$$

The terms in the summation are joint entries because $Y,\,E,\,\mbox{and}\,\,H$ together exhaust the set of random variables

- 1) Worst-case time complexity $O(d^n)$ where d is the largest arity 2) Space complexity $O(d^n)$ to store the joint distribution 3) How to find the numbers for $O(d^n)$ entries???

Chapter 13

Independence

$$A$$
 and B are independent iff $\mathbf{P}(A|B) = \mathbf{P}(A)$ or $\mathbf{P}(B|A) = \mathbf{P}(B)$ or $\mathbf{P}(A,B) = \mathbf{P}(A)\mathbf{P}(B)$

 $\mathbf{P}(Toothache, Catch, Cavity, Weather)$ $\mathbf{P}(Toothache, Catch, Cavity) \mathbf{P}(Weather)$

32 entries reduced to 12; for n independent biased coins, $2^n \rightarrow n$

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional independence

 $\mathbf{P}(Toothache, Cavity, Catch)$ has $2^3-1=7$ independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven't got a cavity:

(2) $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$

Catch is conditionally independent of Toothache given Cavity:

 $\mathbf{P}(Catch|Toothache,Cavity) = \mathbf{P}(Catch|Cavity)$

Equivalent statements:

 $\begin{aligned} \mathbf{P}(Toothache|Catch, Cavity) &= \mathbf{P}(Toothache|Cavity) \\ \mathbf{P}(Toothache, Catch|Cavity) &= \mathbf{P}(Toothache|Cavity) \mathbf{P}(Catch|Cavity) \end{aligned}$

Conditional independence contd.

Write out full joint distribution using chain rule: $\mathbf{P}(Toothache, Catch, Cavity)$

- $= \mathbf{P}(Toothache|Catch, Cavity) \mathbf{P}(Catch, Cavity) \\ = \mathbf{P}(Toothache|Catch, Cavity) \mathbf{P}(Catch|Cavity) \mathbf{P}(Cavity) \\$
- $= \mathbf{P}(Toothache|Cavity)\mathbf{P}(Catch|Cavity)\mathbf{P}(Cavity)$

l.e., 2+2+1=5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in $n\ \rm to\ linear$ in n.

form of knowledge about uncertain environments. Conditional independence is our most basic and robust

Chapter 13

Bayes' Rule

Product rule $P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$

$$\Rightarrow \text{ Bayes' rule } P(a|b) = \frac{P(b|a)P(a)}{P(b)}$$

or in distribution form

$$\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y)\mathbf{P}(Y)}{\mathbf{P}(X)} = \alpha \mathbf{P}(X|Y)\mathbf{P}(Y)$$

Useful for assessing diagnostic probability from causal probability:

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

E.g., let ${\cal M}$ be meningitis, ${\cal S}$ be stiff neck:

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

Note: posterior probability of meningitis still very small!

Bayes' Rule and conditional independence

 $= \alpha \mathbf{P}(toothache \wedge catch|Cavity)\mathbf{P}(Cavity)$

 $\mathbf{P}(Cavity|toothache \land catch)$

 $= \alpha \mathbf{P}(toothache|Cavity) \mathbf{P}(catch|Cavity) \mathbf{P}(Cavity)$

This is an example of a naive Bayes model:

 $\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause)\Pi_i\mathbf{P}(Effect_i|Cause)$

Total number of parameters is linear in n

Wumpus World

 $P_{ij}\!=\!true$ iff [i,j] contains a pit

 $B_{ij} = true \text{ iff } [i, j] \text{ is breezy}$

Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model

Specifying the probability model

The full joint distribution is $\mathbf{P}(P_{1,1},\ldots,P_{4,4},B_{1,1},B_{1,2},B_{2,1})$

Apply product rule: $P(B_{1,1},B_{1,2},B_{2,1}\,|\,P_{1,1},\dots,P_{4,4})P(P_{1,1},\dots,P_{4,4})$

(Do it this way to get P(Effect|Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:

 $\mathbf{P}(P_{1,1},\dots,P_{4,4}) = \prod_{i,j=1,1}^{4,4} \mathbf{P}(P_{i,j}) = 0.2^n \times 0.8^{16-r}$

for n pits.

Observations and query

We know the following facts:

$$b = \neg b_{1,1} \land b_{1,2} \land b_{2,1} known = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1}$$

Query is $\mathbf{P}(P_{1,3}|known,b)$

Define $Unknown = P_{ij}$ s other than $P_{1,3}$ and Known

For inference by enumeration, we have

 $\mathbf{P}(P_{1,3}|known,b) = \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,known,b)$

Grows exponentially with number of squares!

Using conditional independence

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

 $\begin{aligned} & \textbf{Define} \ Unknown = Fringe \cup Other \\ & \textbf{P}(b|P_{1,3}, Known, Unknown) = \textbf{P}(b|P_{1,3}, Known, Fringe) \end{aligned}$

Manipulate query into a form where we can use this!

Chapter 13 31

Using conditional independence contd.

 $\mathbf{P}(P_{1,3}|known,b) = \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,known,b)$ $= \alpha \sum_{unknown}$ $\mathbf{P}(b|P_{1,3}, known, unknown)\mathbf{P}(P_{1,3}, known, unknown)$

 $=\alpha\sum_{fringe\ other}\sum_{eher}P(b|known,P_{1,3},fringe,other)P(P_{1,3},known,fringe,other)$ $=\alpha\sum_{fringe\ other}\sum_{eher}P(b|known,P_{1,3},fringe)P(P_{1,3},known,fringe,other)$ $=\alpha\sum_{fringe}\sum_{eher}P(b|known,P_{1,3},fringe)\sum_{other}P(P_{1,3},known,fringe,other)$ $=\alpha\sum_{fringe}P(b|known,P_{1,3},fringe)\sum_{other}P(P_{1,3})P(known)P(fringe)P(other)$

 $= \alpha P(known) \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b|known, P_{1,3}, fringe) P(fringe) \sum_{other} P(other)$

= $\alpha' \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b|known, P_{1,3}, fringe) P(fringe)$

Using conditional independence contd.

 $\mathbf{P}(P_{1.3}|known,b) = \alpha' \langle 0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16) \rangle$ $\approx \langle 0.31, 0.69 \rangle$

 $\mathbf{P}(P_{2,2}|known,b) \approx \langle 0.86, 0.14 \rangle$

Summary

Independence and conditional independence provide the tools For nontrivial domains, we must find a way to reduce the joint size Queries can be answered by summing over atomic events Joint probability distribution specifies probability of every atomic event Probability is a rigorous formalism for uncertain knowledge