### STATISTICAL LEARNING

Chapter 20, Sections 1-3

#### Bayesian learning

Outline

 $\Diamond$ 

- $\Diamond$ Maximum a posteriori and maximum likelihood learning
- $\Diamond$ Bayes net learning
- ML parameter learning with complete data
- linear regression

### Full Bayesian learning

View learning as Bayesian updating of a probability distribution over the hypothesis space

H is the hypothesis variable, values  $h_1,h_2,\ldots$ , prior  $\mathbf{P}(H)$ 

jth observation  $d_j$  gives the outcome of random variable  $D_j$ 

training data  $\mathbf{d} = d_1, \dots, d_N$ 

Given the data so far, each hypothesis has a posterior probability:

 $P(h_i|\mathbf{d}) = \alpha P(\mathbf{d}|h_i)P(h_i)$ 

where  $P(\mathbf{d}|h_i)$  is called the likelihood

Predictions use a likelihood-weighted average over the hypotheses:

 $\mathbf{P}(X|\mathbf{d}) = \sum_{i} \mathbf{P}(X|\mathbf{d}, h_i) P(h_i|\mathbf{d}) = \sum_{i} \mathbf{P}(X|h_i) P(h_i|\mathbf{d})$ 

No need to pick one best-guess hypothesis!

#### <u>Example</u>

Suppose there are five kinds of bags of candies: 10% are  $h_1$ : 100% cherry candies

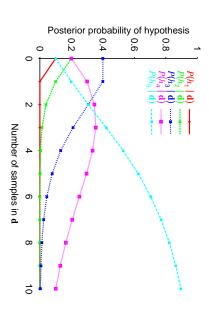
20% are  $h_2$ : 75% cherry candies + 25% lime candies 40% are  $h_3$ : 50% cherry candies + 50% lime candies 20% are  $h_4$ : 25% cherry candies + 75% lime candies  $h_4$ : 25% cherry candies + 75% lime candies

10% are  $h_5$ : 100% lime candies

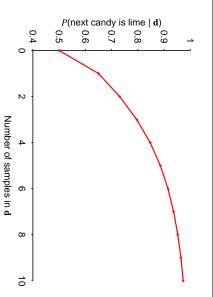












Then we observe candies drawn from some bag: •

What kind of bag is it? What flavour will the next candy be?

# Posterior probability of hypotheses



### Prediction probability



### MAP approximation

Summing over the hypothesis space is often intractable (e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)

Maximum a posteriori (MAP) learning: choose  $h_{\mathrm{MAP}}$  maximizing  $P(h_i|\mathbf{d})$ 

I.e., maximize  $P(\mathbf{d}|h_i)P(h_i)$  or  $\log P(\mathbf{d}|h_i) + \log P(h_i)$ 

Log terms can be viewed as (negative of)

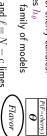
This is the basic idea of minimum description length (MDL) learning bits to encode data given hypothesis + bits to encode hypothesis

For deterministic hypotheses,  $P(\mathbf{d}|h_i)$  is 1 if consistent, 0 otherwise  $\Rightarrow$  MAP = simplest consistent hypothesis (cf. science)

Chapter 20, Sections 1-3

#### ML approximation

For large data sets, prior becomes irrelevant


Maximum likelihood (ML) learning: choose  $h_{
m ML}$  maximizing  $P(\mathbf{d}|h_i)$ 

I.e., simply get the best fit to the data; identical to MAP for uniform prior (which is reasonable if all hypotheses are of the same complexity)

ML is the "standard" (non-Bayesian) statistical learning method

# ML parameter learning in Bayes nets

 $\theta$  is a parameter for this simple (binomial) family of models Any  $\theta$  is possible: continuum of hypotheses  $h_{\theta}$ Bag from a new manufacturer; fraction  $\theta$  of cherry candies?



Flavor

Suppose we unwrap N candies, c cherries and  $\ell\!=\!N-c$  limes These are i.i.d. (independent, identically distributed) observations, so

$$P(\mathbf{d}|h_{\theta}) = \prod_{j=1}^{N} P(d_j|h_{\theta}) = \theta^c \cdot (1-\theta)^{\ell}$$

Maximize this w.r.t.  $\theta$ —which is easier for the log-likelihood:

$$\begin{split} L(\mathbf{d}|h_{\theta}) &= \log P(\mathbf{d}|h_{\theta}) = \sum_{j=1}^{N} \log P(d_{j}|h_{\theta}) = c \log \theta + \ell \log(1-\theta) \\ \frac{dL(\mathbf{d}|h_{\theta})}{d\theta} &= \frac{c}{\theta} - \frac{\ell}{1-\theta} = 0 \quad \Rightarrow \quad \theta = \frac{c}{c+\ell} = \frac{c}{N} \end{split}$$

Seems sensible, but causes problems with 0 counts!

### Multiple parameters

 ${\sf Red/green\ wrapper\ depends\ probabilistically\ on\ flavor:}$ 

Likelihood for, e.g., cherry candy in green wrapper:

$$P(F = cherry, W = green | h_{\theta,\theta_1,\theta_2})$$

$$= P(F = cherry | h_{\theta,\theta_1,\theta_2}) P(W = green | F = cherry, h_{\theta,\theta_1,\theta_2})$$

$$= \theta \cdot (1 - \theta_1)$$

N candies,  $r_c$  red-wrapped cherry candies, etc.:

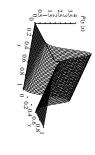
$$P(\mathbf{d}|h_{ heta, heta_1, heta_2}) \,=\, heta^c(1- heta)^\ell \cdot heta_1^{r_{ ext{c}}}(1- heta_1)^{g_c} \cdot heta_2^{r_{ ext{c}}}(1- heta_2)^{g_\ell}$$

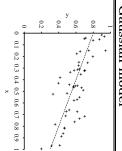
$$S = [c \log \theta + \ell \log(1 - \theta)]$$
  
+  $[r_c \log \theta_1 + g_c \log(1 - \theta_1)]$   
+  $[r_\ell \log \theta_2 + g_\ell \log(1 - \theta_2)]$ 

## Multiple parameters contd.

Derivatives of L contain only the relevant parameter:

$$\frac{\partial L}{\partial \theta} = \frac{c}{\theta} - \frac{\ell}{1 - \theta} = 0 \qquad \Rightarrow \quad \theta = \frac{c}{c + \ell}$$


$$\frac{\partial L}{\partial \theta_1} = \frac{r_c}{\theta_1} - \frac{g_c}{1 - \theta_1} = 0 \qquad \Rightarrow \quad \theta_1 = \frac{r_c}{r_c + g_c}$$


$$=\frac{r_{\ell}}{\theta_{2}} - \frac{g_{\ell}}{1 - \theta_{2}} = 0 \qquad \Rightarrow \quad \theta_{2} = \frac{r_{\ell}}{r_{\ell} + g_{\ell}}$$

 $\partial L$ 

With complete data, parameters can be learned separately

## Example: linear Gaussian model





Maximizing P(y|x) = $\frac{(y-( heta_1x+ heta_2))^2}{2\sigma^2}$  w.r.t.  $heta_1$ ,  $heta_2$ 

= minimizing 
$$E = \sum\limits_{j=1}^{N} (y_j - (\theta_1 x_j + \theta_2))^2$$

That is, minimizing the sum of squared errors gives the ML solution for a linear fit assuming Gaussian noise of fixed variance

Chapter 20, Sections 1-3

#### Summary

Full Bayesian learning gives best possible predictions but is intractable MAP learning balances complexity with accuracy on training data

1. Choose a parameterized family of models to describe the data requires substantial insight and sometimes new models

Maximum likelihood assumes uniform prior, OK for large data sets

- 2. Write down the likelihood of the data as a function of the parameters may require summing over hidden variables, i.e., inference
- 3. Write down the derivative of the log likelihood w.r.t. each parameter
- 4. Find the parameter values such that the derivatives are zero may be hard/impossible; modern optimization techniques help