Example |

Suppose there are five kinds of bags of candies:

STATISTICAL LEARNING

CHAPTER 20, SECTIONS 1-3

10% are hy:
20% are hs:
40% are hs:

100% cherry candies

75% cherry candies + 25% lime candies
50% cherry candies + 50% lime candies
20% are hy: 25% cherry candies + 75% lime candies
10% are hs: 100% lime candies

HDDD

Then we observe candies drawn from some bag: ® ® @ 0000000

What kind of bag is it? What flavour will the next candy be?

[ Outline | __

Posterior probability of hypotheses |

() Bayesian learning
{ Maximum a posteriori and maximum likelihood learning

{> Bayes net learning
— ML parameter learning with complete data
— linear regression

Posterior probability of hypothesis

Number of samples in d

I Full Bayesian learning | I

Prediction probability |

View learning as Bayesian updating of a probability distribution
over the hypothesis space
H is the hypothesis variable, values /11, hs, . .., prior P(H)

jth observation d; gives the outcome of random variable D
training data d=d;,...,dy

Given the data so far, each hypothesis has a posterior proba
P(hi|d) = aP(d|h;)P(h;)

where P(d|h;) is called the likelihood

Predictions use a likelihood-weighted average over the hypotheses:
P(X|d) = %; P(X|d, h;)P(hi|d) = X; P(X|h;)P(h;|d)

No need to pick one best-guess hypothesis!
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I MAP approximation |

Summing over the hypothesis space is often intractable
(e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)

Maximum a posteriori (MAP) learning: choose hyap maximizing P(h;

d)
l.e., maximize P(d|h;)P(h;) or log P(d|h;) + log P(h;)

Log terms can be viewed as (negative of)
bits to encode data given hypothesis + bits to encode hypothesis
This is the basic idea of minimum description length (MDL) learning

For deterministic hypotheses, P(d|h;) is 1 if consistent, 0 otherwise
= MAP = simplest consistent hypothesis (cf. science)

I ML approximation |

For large data sets, prior becomes irrelevant
Maximum likelihood (ML) learning: choose hyi, maximizing P(d|h;)

l.e., simply get the best fit to the data; identical to MAP for uniform prior
(which is reasonable if all hypotheses are of the same complexity)

ML is the “standard” (non-Bayesian) statistical learning method

20, Sections 13 8

I ML parameter learning in Bayes nets |
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Suppose we unwrap N candies, ¢ cherries and { =N — ¢ limes
These are i.i.d. (independent, identically distributed) observations, so

P(dhg) = 11 P(d;|hg) = 6 - (1— 6)'

j=1

Maximize this w.r.t. #—which is easier for the log-likelihood:

L(d|hg) = log P(d|hg) = .M/._ log P(d;|hg) = clog 0 4 £log(1 — )
=

dL(dlhy) ¢ [ ¢
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Seems sensible, but causes problems with 0 counts!

apter 20, Sections 13 9

I Multiple parameters

Red/green wrapper depends probabilistically on flavor: PE=cherry)|

Likelihood for, e.g., cherry candy in green wrapper:

P(F = cherry, W = green|hg, 0,)

P(W=red |F)

= P(F = cherry|hgg, 0,) P(W = green|F = cherry, hg g, 0,)| 12

= 6-(1—0)

N candies, 7. red-wrapped cherry candies, etc.:

P(d|hgg,0,) = 091 —0)" - 07(1 — 0,)% - 05'(1 — )%

L = [clogf + Clog(1 —0)]
+ [rclog 0y + g log(1 — 64)]
+ [relog By + gelog(1 — 65)]

I Multiple parameters contd.

Derivatives of L contain only the relevant parameter:
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With complete data, parameters can be learned separately

I Example: linear Gaussian model
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= minimizing F = M_C\\ — (012 + 02))?
j=

That is, minimizing the sum of squared errors gives the ML solution
for a linear fit assuming Gaussian noise of fixed variance




[ Summary |

Full Bayesian learning gives best possible predictions but is intractable
MAP learning balances complexity with accuracy on training data
Maximum likelihood assumes uniform prior, OK for large data sets

1. Choose a parameterized family of models to describe the data
requires substantial insight and sometimes new models

2. Write down the likelihood of the data as a function of the parameters
may require summing over hidden variables, i.e., inference

3. Write down the derivative of the log likelihood w.r.t. each parameter

4. Find the parameter values such that the derivatives are zero
may be hard/impossible; modern optimization techniques help




