Decision Trees

Learning Decision Trees

Decision trees provide a very popular and efficient hypothesis space.
« Variable Size. Any boolean function can be represented
e Deterministic.

* Discrete and Continuous Parameters

Learning algorithms for decision trees can be described as

« Constructive Search. The tree is built by adding nod

o Eager.

 Batch (although online algorithms do exist)

Decision Tree Hypothesis Space

o Internal nodes test the value of particular features z; and branch according to the

results of the test.

o Leaf nodes specify the class A(x)
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Suppose the features are Outlook (x1), Temperature (z;), Humidity (z3), and Wind
(4). Then the feature vector x = (Sunny, Hot, High, Strong) will be classified as No. The

Temperature feature is irrelevant

Decision Tree Hypothesis Space

If the features are continuous, internal nodes may test the value of a feature against a threshold
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Decision Tree Decision Boundaries

Decision trees divide the feature space into axis-parallel rectangles, and label cach rectangle
with one of the K classes
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Decision Trees Can Represent Any Boolean Function
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The tree will in the worst case require exponentially many nodes, however.

Decision Trees Provide Variable-Size Hypothesis Space

As the number of nodes (or depth) of tree increases, the hypothesis space
grows
o depth 1 (“decision stump”) can represent any boolean function of one feature.
o depth 2 Any boolean function of two features; some boolean functions involving three
features (e.g, (#1 A ©2) V (~a1 A —as)

e etc.

Learning Algorithm for Decision Trees

The same basic learning algorithm has been discovered by many people independently:

GROWTREE(S)
if (y = 0 for all (x,y) € S) return new leaf(0)

else if (y = 1 for all (x,y) € S) return new leaf(1)

else

choose best attribute z;
So = all (x,y) € S with z; = 0;
Sy =all (x,y) € S with z; = 1

return new node(z;, GROWTREE(S;), GROWTREE(S)))




Choosing the Best Attribute

One way to choose the best attribute is to perform a I-step lookahead search and choose the

attribute that gives the lowest error rate on the training data.

CHOOSEBESTATTRIBUTE(S)

choose j to minimize J;, computed as follows
Sy =all (x,y) € S with a; = 0;
Sy =all (x,y) € S with a; = 1
o = the most common value of y in So

1 = the most common value of y in S
Jo = number of examples (x,) € Sy with y # o
number of examples (X, y) € Sy with y # g

Jo+ Ji (total errors if we split on this feature)

return j

Choosing the Best Attribute—An Example
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Choosing the Best Attribute (3)

Unfortunately, this measure does not always work well, because it does not detect cases where

we are making “progress” toward a good tree.

A Better Heuristic From Information Theory

Let V be a random variable with the following probability distribution:

The surprise, S(V = v) of each value of V' is defined to be

S(V =v)=—IgP(V = ).

An cvent with probability 1 gives us zero surprise.

An event with probability 0 gives us infinite surprise!

It turns out that the surprise is equal to the number of bits of information that need to be
transmitted to a recipient who knows the probabilities of the results.

This is also called the des
Fractional bits only make sense if they are part of a longer message (c.g, describe a whole

iption length of V = v.

sequence of coin tosses)




Entropy

The entropy of V', denoted H(V) is defined as follows:

H(V)= 3. —P(H =v)lg P(H = v).

P
h=}

This is the average surprise of describing the result of one “trial” of V' (one coin toss)
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Entropy can be viewed as a measure of uncertainty.

Mutual Information

Now consider two random variables A and B that are not necessarily independent. The mutual
information between A and B is the amount of information we learn about B by knowning
the value of A (and vice versa—it is symmetric). Tt is computed as follows:

I(4;B) = H(B) ~ S P(B=1)- H(AIB =)

In particular, consider the class Y of each training example and the value of feature z; to be
random variables. Then the mutual information quantifies how much z; tells us about the
value of the class Y

H(Y)=0.9183

x1
P(x1=0) = 0.6667 P(x

H(YIx1=0) = 0.9710

=0.3333

H(YIx1=1)=0.7219

1(Y:x1) = 0.0304

Visualizing Heuristics
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Mutual information works because it is a convex measure.

Non-Boolean Features

o Features with multiple discrete values
Construct a multiway split?
Test for one value versus all of the others?

Group the values into two disjoint subsets?

* Real-valued features

Consider a threshold split using each observed value of the feature.

‘Whichever method is used, the mutual information can be computed to choose the best split




Learning Parity with Noise

When learning exclusive-or (2-bit parity), all splits look equally good. If extra random boolean
features are included, they also look cqually good. Hence, decision tree algorithms cannot

distinguish random noisy features from parity features.
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Attributes with Many Values

Problem:
e If attribute has many values, Gain will select it

e Imagine using Date = Jun_3_1996 as attribute

One approach: use GainRatio instead
Gain(S, A)
SplitInformation(S, A)

GainRatio(S, A) =

[Ss] log, |:S;]
S| S|

SplitInformation(S, A) = — Z
i=1

where S; is subset of S for which A has value v;

Unknown Attribute Values

‘What if some examples are missing values of A?
Use training example anyway, sort through tree

e If node n tests A, assign most common value of A
among other examples sorted to node n

e Assign most common value of A among other examples
with same target value

e Assign probability p; to each possible value v; of A
Assign fraction p; of example to each descendant in tree

Classify new examples in same fashion

Overfitting in Decision Trees

Outlook
Sunny  Overcast Rain

High Normal Strong Weak

No Yes No Yes

Consider adding a noisy training example:
Sunny, Hot, Normal, Strong, PlayTennis=No
‘What effect on tree?




Overfitting

Consider error of hypothesis h over

e training data: erroryqin(h)

e entire distribution D of data: errorp(h)
Hypothesis h € H overfits training data if there is an
alternative hypothesis b’ € H such that

erroTirain(h) < erroriqin(h')

and
errorp(h) > errorp(h’)

Overfitting in Decision Tree Learning
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Avoiding Overfitting

How can we avoid overfitting?

e Stop growing when data split not statistically
significant

e Grow full tree, then post-prune

How to select “best” tree:
e Measure performance over training data
e Measure performance over separate validation data set

e Add complexity penalty to performance measure

Reduced-Error Pruning
Split data into training and validation set

Do until further pruning is harmful:

1. Evaluate impact on wvalidation set of pruning each
possible node (plus those below it)

2. Greedily remove the one that most improves validation
set accuracy




Accuracy

Effect of Reduced-Error Pruning
Rule Post-Pruning
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Converting A Tree to Rules

IF (Outlook = Sunny) AN D (Humidity = High)
THEN PlayTennis = No

Sunny Overcast Rain

) IF (Outlook = Sunny) AN D (Humidity = Normal)
yes THEN PlayTennis =Yes

High Normal Strong Weak

No Yes No Yes




Scaling Up

e ID3, C4.5, etc. assume data fits in main memory
(OK for up to hundreds of thousands of examples)

e SPRINT, SLIQ: multiple sequential scans of data
(OK for up to millions of examples)

e VFDT: at most one sequential scan
(OK for up to billions of examples)

Decision Trees: Summary

Representation

Tree growth

Heuristics

Overfitting and pruning
Scaling up




